DOI

Let O ⸦ R d be a bounded domain of class C 2p. In L 2(O; C n), we study a self-adjoint strongly elliptic operator A N,ε of order 2p given by the expression b(D) *g(x/ε)b(D), ε > 0, with Neumann boundary conditions. Here, g(x) is a bounded and positive definite matrix-valued function in R d, periodic with respect to some lattice; b(D) = Σ|α|=p bαDα is a differential operator of order p. The symbol b(ξ) is subject to some condition ensuring strong ellipticity of the operator A N,ε. We find approximations for the resolvent (A N,ε − ζ I) −1 in different operator norms with error estimates depending on ε and ζ.

Язык оригиналаанглийский
Страницы (с-по)1185-1215
Число страниц31
ЖурналComplex Variables and Elliptic Equations
Том63
Номер выпуска7-8
DOI
СостояниеОпубликовано - 3 авг 2018

    Предметные области Scopus

  • Математика (все)
  • Вычислительная математика
  • Анализ
  • Прикладная математика
  • Численный анализ

ID: 35179415