Standard

Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition. / Суслина, Татьяна Александровна.

в: Izvestiya Mathematics, Том 88, № 4, 2024, стр. 678-759.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{86ca1837811f414f99f167689fa31efb,
title = "Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition",
abstract = "Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we consider a selfadjoint matrix elliptic second-order differential operator $B_{N,\varepsilon}$, $0",
author = "Суслина, {Татьяна Александровна}",
year = "2024",
doi = "10.4213/im9520e",
language = "English",
volume = "88",
pages = "678--759",
journal = "Izvestiya Mathematics",
issn = "1064-5632",
publisher = "IOP Publishing Ltd.",
number = "4",

}

RIS

TY - JOUR

T1 - Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition

AU - Суслина, Татьяна Александровна

PY - 2024

Y1 - 2024

N2 - Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we consider a selfadjoint matrix elliptic second-order differential operator $B_{N,\varepsilon}$, $0

AB - Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we consider a selfadjoint matrix elliptic second-order differential operator $B_{N,\varepsilon}$, $0

UR - https://www.mendeley.com/catalogue/d6f3f7fb-9cef-337a-8524-ba1911612d0b/

U2 - 10.4213/im9520e

DO - 10.4213/im9520e

M3 - Article

VL - 88

SP - 678

EP - 759

JO - Izvestiya Mathematics

JF - Izvestiya Mathematics

SN - 1064-5632

IS - 4

ER -

ID: 122806989