Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Homogenization for locally periodic elliptic operators. / Senik, Nikita N.
в: Journal of Mathematical Analysis and Applications, Том 505, № 2, 125581, 15.01.2022.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Homogenization for locally periodic elliptic operators
AU - Senik, Nikita N.
N1 - Publisher Copyright: © 2021 Elsevier Inc.
PY - 2022/1/15
Y1 - 2022/1/15
N2 - We study the homogenization problem for matrix strongly elliptic operators on L-2(R-d)(n) of the form A(epsilon) = - div A(x , x/epsilon)del. The function A is Lipschitz in the first variable and periodic in the second. We do not require that A* = A, so A(epsilon) need not be self-adjoint. In this paper we provide the first two terms of a uniform approximation for (A(epsilon) - mu)(-1) and the first term of a uniform approximation for del(A(epsilon) - mu)(-1) as epsilon -> 0. Primary attention is paid to proving sharp-order bounds on the errors of approximation. (C) 2021 Elsevier Inc. All rights reserved.
AB - We study the homogenization problem for matrix strongly elliptic operators on L-2(R-d)(n) of the form A(epsilon) = - div A(x , x/epsilon)del. The function A is Lipschitz in the first variable and periodic in the second. We do not require that A* = A, so A(epsilon) need not be self-adjoint. In this paper we provide the first two terms of a uniform approximation for (A(epsilon) - mu)(-1) and the first term of a uniform approximation for del(A(epsilon) - mu)(-1) as epsilon -> 0. Primary attention is paid to proving sharp-order bounds on the errors of approximation. (C) 2021 Elsevier Inc. All rights reserved.
KW - Corrector
KW - Effective operator
KW - Homogenization
KW - Locally periodic operators
KW - Operator error estimates
KW - ERROR ESTIMATE
KW - SYSTEMS
UR - http://www.scopus.com/inward/record.url?scp=85113672483&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/76a1a55a-f4e1-368c-bbdd-ca7b4f334d92/
U2 - 10.1016/j.jmaa.2021.125581
DO - 10.1016/j.jmaa.2021.125581
M3 - Article
AN - SCOPUS:85113672483
VL - 505
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
SN - 0022-247X
IS - 2
M1 - 125581
ER -
ID: 86012898