Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
To study s-homogeneous algebras, we introduce the category of quivers with s-homogeneous corelations and the category of s-homogeneous triples. We show that both of these categories are equivalent to the category of s-homogeneous algebras. We prove some properties of the elements of s-homogeneous triples and give some consequences for s-Koszul algebras. Then we discuss the relations between the s-Koszulity and the Hilbert series of s-homogeneous triples. We give some application of the obtained results to s-homogeneous algebras with simple zero component. We describe all s-Koszul algebras with one relation recovering the result of Berger and all s-Koszul algebras with one dimensional s-th component. We show that if the s-th Veronese ring of an s-homogeneous algebra has two generators, then it has at least two relations. Finally, we classify all s-homogeneous algebras with s-th Veronese rings k〈x,y〉/(xy,yx) and k〈x,y〉/(x2,y2). In particular, we show that all of these algebras are not s-Koszul while their s-homogeneous duals are s-Koszul.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 259-282 |
Число страниц | 24 |
Журнал | Journal of Algebra |
Том | 566 |
DOI | |
Состояние | Опубликовано - 15 янв 2021 |
ID: 100812387