Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
In this paper, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky-Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1421-1458 |
Число страниц | 38 |
Журнал | European Physical Journal: Special Topics |
Том | 224 |
Номер выпуска | 8 |
DOI | |
Состояние | Опубликовано - 25 июл 2015 |
ID: 4005560