In this paper, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky-Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.

Язык оригиналаанглийский
Страницы (с-по)1421-1458
Число страниц38
ЖурналEuropean Physical Journal: Special Topics
Том224
Номер выпуска8
DOI
СостояниеОпубликовано - 25 июл 2015

    Предметные области Scopus

  • Материаловедение (все)
  • Физика и астрономия (все)
  • Физическая и теоретическая химия

ID: 4005560