Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Hölder shadowing on finite intervals. / Tikhomirov, Sergey.
в: Ergodic Theory and Dynamical Systems, Том 35, № 6, 2014, стр. 2000-2016.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Hölder shadowing on finite intervals
AU - Tikhomirov, Sergey
PY - 2014
Y1 - 2014
N2 - For any $\theta, \omega>1/2$, we prove that, if any $d$-pseudotrajectory of length $∼1/d\omega$ of a diffeomorphism $f\in C^2$ can be $d\theta$-shadowed by an exact trajectory, then f is structurally stable. Previously it was conjectured [S. M. Hammel et al. Do numerical orbits of chaotic dynamical processes represent true orbits. J. Complexity3 (1987), 136–145; S. M. Hammel et al. Numerical orbits of chaotic processes represent true orbits. Bull. Amer. Math. Soc.19 (1988), 465–469] that for $\theta=\omega=1/2$, this property holds for a wide class of non-uniformly hyperbolic diffeomorphisms. In the proof, we introduce the notion of a sublinear growth property for inhomogeneous linear equations and prove that it implies exponential dichotomy.
AB - For any $\theta, \omega>1/2$, we prove that, if any $d$-pseudotrajectory of length $∼1/d\omega$ of a diffeomorphism $f\in C^2$ can be $d\theta$-shadowed by an exact trajectory, then f is structurally stable. Previously it was conjectured [S. M. Hammel et al. Do numerical orbits of chaotic dynamical processes represent true orbits. J. Complexity3 (1987), 136–145; S. M. Hammel et al. Numerical orbits of chaotic processes represent true orbits. Bull. Amer. Math. Soc.19 (1988), 465–469] that for $\theta=\omega=1/2$, this property holds for a wide class of non-uniformly hyperbolic diffeomorphisms. In the proof, we introduce the notion of a sublinear growth property for inhomogeneous linear equations and prove that it implies exponential dichotomy.
KW - Holder shadowing
KW - exponential dichotomy
KW - sublinear growth property
U2 - 10.1017/etds.2014.7
DO - 10.1017/etds.2014.7
M3 - Article
VL - 35
SP - 2000
EP - 2016
JO - Ergodic Theory and Dynamical Systems
JF - Ergodic Theory and Dynamical Systems
SN - 0143-3857
IS - 6
ER -
ID: 5799401