Standard

Hochschild Cohomology of Algebras of Semidihedral Type. IX : Exceptional Local Algebras. / Generalov, A. I.; Nikulin, D. A.

в: Journal of Mathematical Sciences , Том 247, № 4, 01.06.2020, стр. 507-517.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Generalov, A. I. ; Nikulin, D. A. / Hochschild Cohomology of Algebras of Semidihedral Type. IX : Exceptional Local Algebras. в: Journal of Mathematical Sciences . 2020 ; Том 247, № 4. стр. 507-517.

BibTeX

@article{e592c61be25b4362ba4737d35828f050,
title = "Hochschild Cohomology of Algebras of Semidihedral Type. IX: Exceptional Local Algebras",
abstract = "The Hochschild cohomology groups for a family of local algebras of semidihedral type are calculated. The family occurs in the Erdmann classification only in the case where the characteristic of underlying field equals 2.",
author = "Generalov, {A. I.} and Nikulin, {D. A.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Science+Business Media, LLC, part of Springer Nature.",
year = "2020",
month = jun,
day = "1",
doi = "10.1007/s10958-020-04817-x",
language = "English",
volume = "247",
pages = "507--517",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Hochschild Cohomology of Algebras of Semidihedral Type. IX

T2 - Exceptional Local Algebras

AU - Generalov, A. I.

AU - Nikulin, D. A.

N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

PY - 2020/6/1

Y1 - 2020/6/1

N2 - The Hochschild cohomology groups for a family of local algebras of semidihedral type are calculated. The family occurs in the Erdmann classification only in the case where the characteristic of underlying field equals 2.

AB - The Hochschild cohomology groups for a family of local algebras of semidihedral type are calculated. The family occurs in the Erdmann classification only in the case where the characteristic of underlying field equals 2.

UR - http://www.scopus.com/inward/record.url?scp=85084232290&partnerID=8YFLogxK

U2 - 10.1007/s10958-020-04817-x

DO - 10.1007/s10958-020-04817-x

M3 - Article

VL - 247

SP - 507

EP - 517

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 78505991