Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Hill's operators with the potentials analytically dependent on energy. / Badanin, Andrey; Korotyaev, Evgeny L.
в: Journal of Differential Equations, Том 271, 15.01.2021, стр. 638-664.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Hill's operators with the potentials analytically dependent on energy
AU - Badanin, Andrey
AU - Korotyaev, Evgeny L.
N1 - Funding Information: A. Badanin was supported by the RFBR grant number 19-01-00094 . E. Korotyaev was supported by the RSF grant number 18-11-00032 . Publisher Copyright: © 2020 Elsevier Inc. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/1/15
Y1 - 2021/1/15
N2 - We consider Schrödinger operators on the line with potentials that are periodic with respect to the coordinate variable and real analytic with respect to the energy variable. We prove that if the imaginary part of the potential is bounded in the right half-plane, then the high energy spectrum is real, and the corresponding asymptotics are determined. Moreover, the Dirichlet and Neumann problems are considered. These results are used to analyze the good Boussinesq equation.
AB - We consider Schrödinger operators on the line with potentials that are periodic with respect to the coordinate variable and real analytic with respect to the energy variable. We prove that if the imaginary part of the potential is bounded in the right half-plane, then the high energy spectrum is real, and the corresponding asymptotics are determined. Moreover, the Dirichlet and Neumann problems are considered. These results are used to analyze the good Boussinesq equation.
KW - Asymptotics
KW - Eigenvalues
KW - Energy-dependent potential
KW - Hill's equation
UR - http://www.scopus.com/inward/record.url?scp=85091226497&partnerID=8YFLogxK
U2 - 10.1016/j.jde.2020.09.016
DO - 10.1016/j.jde.2020.09.016
M3 - Article
AN - SCOPUS:85091226497
VL - 271
SP - 638
EP - 664
JO - Journal of Differential Equations
JF - Journal of Differential Equations
SN - 0022-0396
ER -
ID: 70062412