Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The high-temperature behaviour of three Ca borosilicates has been studied by in situ powder high-temperature X-ray diffraction (HTXRD), differential scanning calorimetry and thermogravimetry in the temperature range 30–900 °C for natural samples of datolite, CaBSiO4(OH), and ‘bakerite’, Ca4B5Si3O15(OH)5, and a synthetic analogue of okayamalite, Ca2B2SiO7. The latter was obtained by heating datolite at 800 °C for 5 h. Datolite and bakerite start to dehydroxylate above 700 and 500 °C, respectively, and decompose fully to form a high-temperature modification of okayamalite, HT-Ca2B2SiO7, and wollastonite, CaSiO3 at about 730 °С. Above 900 °C, HT-okayamalite decomposes with the formation of wollastonite, CaSiO3, and metaborate CaB2O4. The latter melts at about 990 °C. Above 1000 °C, only the existence of wollastonite, CaSiO3 and cristobalite, SiO2 was observed. According to the HTXRD data, in the temperature range 30–500 °C, datolite and ‘bakerite’ demonstrate very similar and relatively low volumetric thermal expansion: αv = 29 and 27 × 10−6 °C−1, respectively. A high thermal expansion anisotropy (αmax/αmin ~ 3) is caused by both the layered character of the crystal structures and the shear deformations of their monoclinic unit cells. The direction of maximum expansion is intermediate between the normal direction to the layers and the (a + c) vector. A possible transformation mechanism from the datolite to the okayamalite structure topology is proposed from geometrical considerations. The synthetic analogue of okayamalite, Ca2B2SiO7, undergoes a reversible polymorphic transition at about 550 °C with a decrease in symmetry from tetragonal to orthorhombic. The crystal structure of the high-temperature (HT) modification of okayamalite was solved from the powder-diffraction data [900 °C: P21212, a = 7.3361(4), b = 7.1987(4), c = 4.8619(4) Å, V = 256.76(3) Å3, Rwp = 6.61, RBragg = 2.68%].
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 463-473 |
| Число страниц | 11 |
| Журнал | Physics and Chemistry of Minerals |
| Том | 45 |
| Номер выпуска | 5 |
| DOI | |
| Состояние | Опубликовано - 1 мая 2018 |
ID: 11662603