Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Hierarchical Cluster Analysis by R language for Pattern Recognition in the Bathymetric Data Frame: a Case Study of the Mariana Trench, Pacific Ocean. / Леменкова, Полина Алексеевна.
ВИРТУАЛЬНОЕ МОДЕЛИРОВАНИЕ, ПРОТОТИПИРОВАНИЕ И ПРОМЫШЛЕННЫЙ ДИЗАЙН : Материалы V Международной научно-практической конференции. Том 2 5. ред. Тамбов, 2018. стр. 147-153.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Hierarchical Cluster Analysis by R language for Pattern Recognition in the Bathymetric Data Frame: a Case Study of the Mariana Trench, Pacific Ocean
AU - Леменкова, Полина Алексеевна
PY - 2018/11/14
Y1 - 2018/11/14
N2 - The geographic focus of the current study Mariana trench, the deepest point of the Earth located in the west Pacific Ocean. Mariana trench has unique structure and features formed in the complex process of the trench development. There is a range of the environmental factors affecting trench structure and functioning: bathymetry, geography, geology and tectonics. Current research aimed to study interconnections among these determinants. Technically, the research was performed by R programming language, statistical analysis, and Quantum GIS. Methodology includes a range of the statistical methods for data processing, the most important of which is cluster analysis. The results revealed unevenness of the factors affecting trench bathymetric structure, caused by the environmental conditions.
AB - The geographic focus of the current study Mariana trench, the deepest point of the Earth located in the west Pacific Ocean. Mariana trench has unique structure and features formed in the complex process of the trench development. There is a range of the environmental factors affecting trench structure and functioning: bathymetry, geography, geology and tectonics. Current research aimed to study interconnections among these determinants. Technically, the research was performed by R programming language, statistical analysis, and Quantum GIS. Methodology includes a range of the statistical methods for data processing, the most important of which is cluster analysis. The results revealed unevenness of the factors affecting trench bathymetric structure, caused by the environmental conditions.
KW - Cluster analysis
KW - R programming language
KW - algorithms
KW - oceanography
KW - Mariana Trench
UR - https://elibrary.ru/item.asp?id=37086376
M3 - Conference contribution
SN - 978-5-8265-1997-4
VL - 2
SP - 147
EP - 153
BT - ВИРТУАЛЬНОЕ МОДЕЛИРОВАНИЕ, ПРОТОТИПИРОВАНИЕ И ПРОМЫШЛЕННЫЙ ДИЗАЙН
CY - Тамбов
T2 - ВИРТУАЛЬНОЕ МОДЕЛИРОВАНИЕ, ПРОТОТИПИРОВАНИЕ И ПРОМЫШЛЕННЫЙ ДИЗАЙН
Y2 - 14 November 2018 through 16 November 2018
ER -
ID: 134334465