The classical attractors of Lorenz, Rössler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use standard numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. Study of hidden oscillations and attractors requires the development of new analytical and numerical methods which will be considered in this paper.

Язык оригиналаанглийский
Страницы (с-по)54-67
Число страниц14
ЖурналWSEAS Transactions on Systems and Control
Том6
Номер выпуска2
СостояниеОпубликовано - фев 2011

    Предметные области Scopus

  • Системотехника
  • Теория оптимизации

ID: 95274678