Standard

Hexagonally symmetric orthogonal filters with √3 refinement. / Krivoshein, Aleksandr.

в: Multidimensional Systems and Signal Processing, Том 32, № 1, 01.2021, стр. 217 - 238.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Krivoshein, A 2021, 'Hexagonally symmetric orthogonal filters with √3 refinement', Multidimensional Systems and Signal Processing, Том. 32, № 1, стр. 217 - 238. https://doi.org/10.1007/s11045-020-00735-y

APA

Krivoshein, A. (2021). Hexagonally symmetric orthogonal filters with √3 refinement. Multidimensional Systems and Signal Processing, 32(1), 217 - 238. https://doi.org/10.1007/s11045-020-00735-y

Vancouver

Krivoshein A. Hexagonally symmetric orthogonal filters with √3 refinement. Multidimensional Systems and Signal Processing. 2021 Янв.;32(1):217 - 238. https://doi.org/10.1007/s11045-020-00735-y

Author

Krivoshein, Aleksandr. / Hexagonally symmetric orthogonal filters with √3 refinement. в: Multidimensional Systems and Signal Processing. 2021 ; Том 32, № 1. стр. 217 - 238.

BibTeX

@article{df41a3565e214c8e8761e28edf65dbaa,
title = "Hexagonally symmetric orthogonal filters with √3 refinement",
abstract = "The complete parametrization of orthogonal hexagonally symmetric low-pass filters with 3 refinement is presented for several cases of coefficient supports. Given a symmetric low-pass filter, a method that allows to construct hexagonally symmetric tight wavelet frames is suggested. Also, a framework for the construction of orthogonal hexagonally symmetric wavelets is presented.",
keywords = "Hexagonal symmetry, Wavelets, Tight wavelet frames, Orthogonal filters, Hexagonal symmetry, Orthogonal filters, Tight wavelet frames, Wavelets, AFFINE SYSTEMS, CONSTRUCTION, L-2(R-D), WAVELET BASES",
author = "Aleksandr Krivoshein",
note = "Krivoshein, A. Hexagonally symmetric orthogonal filters with 3–√ refinement. Multidim Syst Sign Process (2020). https://doi.org/10.1007/s11045-020-00735-y",
year = "2021",
month = jan,
doi = "10.1007/s11045-020-00735-y",
language = "English",
volume = "32",
pages = "217 -- 238",
journal = "Multidimensional Systems and Signal Processing",
issn = "0923-6082",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Hexagonally symmetric orthogonal filters with √3 refinement

AU - Krivoshein, Aleksandr

N1 - Krivoshein, A. Hexagonally symmetric orthogonal filters with 3–√ refinement. Multidim Syst Sign Process (2020). https://doi.org/10.1007/s11045-020-00735-y

PY - 2021/1

Y1 - 2021/1

N2 - The complete parametrization of orthogonal hexagonally symmetric low-pass filters with 3 refinement is presented for several cases of coefficient supports. Given a symmetric low-pass filter, a method that allows to construct hexagonally symmetric tight wavelet frames is suggested. Also, a framework for the construction of orthogonal hexagonally symmetric wavelets is presented.

AB - The complete parametrization of orthogonal hexagonally symmetric low-pass filters with 3 refinement is presented for several cases of coefficient supports. Given a symmetric low-pass filter, a method that allows to construct hexagonally symmetric tight wavelet frames is suggested. Also, a framework for the construction of orthogonal hexagonally symmetric wavelets is presented.

KW - Hexagonal symmetry

KW - Wavelets

KW - Tight wavelet frames

KW - Orthogonal filters

KW - Hexagonal symmetry

KW - Orthogonal filters

KW - Tight wavelet frames

KW - Wavelets

KW - AFFINE SYSTEMS

KW - CONSTRUCTION

KW - L-2(R-D)

KW - WAVELET BASES

UR - http://www.scopus.com/inward/record.url?scp=85087955229&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/0caa9bd5-ed24-3085-8a84-6b8a336b1b7c/

U2 - 10.1007/s11045-020-00735-y

DO - 10.1007/s11045-020-00735-y

M3 - Article

AN - SCOPUS:85087955229

VL - 32

SP - 217

EP - 238

JO - Multidimensional Systems and Signal Processing

JF - Multidimensional Systems and Signal Processing

SN - 0923-6082

IS - 1

ER -

ID: 70835748