Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The paper may be considered as a supplement to the book by M. Krein and M. Naimark. Problem: find the number of real solutions of an algebraic system f1(x, y) = 0, f2(x,y) = 0 satisfying an algebraic condition g(x, y) > 0. We give a review of Hermite's method, which permits one to solve the problem using a finite number of algebraic operations on the coefficients of f1, f2, g. The method reduces the problem to an investigation of the quadratic form in x0,..., xN-1: ∑ j=1 N(αj, βj)[x0 + x1βj+⋯+xn-1βj N-1]2: where (αj, βj) is a solution of the system, and N = deg f1 deg f2. Methods involved: elimination theory, the theory of symmetric functions, and the theory of Hankel quadratic forms. Applications: analogue of Sturm series in R2, calculation of the Kronecker-Poincaré index of an algebraic field with respect to an algebraic curve in R2, conditions for the sign-definiteness of a homogeneous higher-order polynomial of three variables. We discuss also the possibility of extension of the method to R2.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 49-88 |
Число страниц | 40 |
Журнал | Linear Algebra and Its Applications |
Том | 177 |
Номер выпуска | C |
DOI | |
Состояние | Опубликовано - 1 янв 1992 |
ID: 32925950