DOI

Background: microRNAs have recently been identified as powerful biomarkers of human disease. Reliable polymerase chain reaction (PCR)-based quantification of nucleic acids in clinical samples contaminated with polymerase inhibitor heparin requires deheparinization. However, the effects of deheparinization procedure on quantification of nucleic acids remain largely unknown. The aim of this study was to determine whether the deheparinization procedure completely eliminates the inhibition of amplification, while maintaining RNA integrity and technical variability of the measured microRNA levels. Methods: Heparinized plasma from 9 patients undergoing coronary artery bypass grafting (CABG) and the heparin-free plasma from 58 rats were spiked with a synthetic RNA oligonucleotide and total RNA was extracted. The RNA solutions were then treated with heparinase I to remove contaminating heparin prior to reverse transcription. Levels of synthetic spike-in RNA oligonucleotide, as well as endogenous hsa-miR-1-3p and hsa-miR-208a-3p, were measured using quantitative reverse transcription PCR (RT-qPCR). The amplification efficiency and presence of inhibitors in individual samples were directly determined using calibration curves. Results: In contrast to RNA samples from rat plasma, RNA samples derived from the CABG patient plasma contained inhibitors, which were completely eliminated by treatment with heparinase. The procedure caused a decrease in the amount of detected RNA; however, the technical variability of the measured targets did not change, allowing for the quantification of circulating endogenous hsa-miR-1-3p and hsa-miR-208a-3p in the plasma of CABG patients. Conclusions: The heparinase treatment procedure enables utilization of RT-qPCR for reliable microRNA quantification in heparinized plasma.

Язык оригиналаанглийский
Страницы (с-по)9-14
Число страниц6
ЖурналBiomolecular Detection and Quantification
Том8
DOI
СостояниеОпубликовано - 1 июн 2016

    Предметные области Scopus

  • Структурная биология
  • Биохимия
  • Молекулярная медицина
  • Молекулярная биология

ID: 7564809