DOI

This article presents a research focused on improving the control of stochastic search procedures within an ε-neighborhood surrounding current monitoring outcomes of control parameters in technological processes. The research aimed to enhance the effectiveness of control measures through the utilization of state-of-the-art Random Search (RS) technology. A mathematical structure was established to define an ε-neighborhood for manipulating parameters and setting boundaries for the search space. Various methods were explored for selecting manipulation parameters using operator-driven processes via Human-Machine Interface (HMI) tools. The RS-Control Module's functional structure accounted for the dynamics of controlled parameter evolution using a sliding observation window. The RS-Optimization Module's software implementation allowed for forecasting output parameters and assessing forecast accuracy using quality indicators. The implementation of the main program provided a user-friendly interface for adjusting process parameters, optimizing criteria, and monitoring control based on RS forecasts. The research demonstrated the effectiveness of the proposed approach in improving output and technological parameters in industrial processes.
Язык оригиналаанглийский
Название основной публикацииIntelligent Industrial Informatics and Efficient Networks Proceedings of the INFUS 2024 Conference
ИздательSpringer Nature
Страницы464-470
Число страниц7
Том3
ISBN (электронное издание)978-3-031-67192-0
ISBN (печатное издание)978-3-031-67191-3
DOI
СостояниеОпубликовано - 2024
Событие2024 Intelligent and Fuzzy Systems - , Турция
Продолжительность: 16 июл 202418 сен 2024
https://infus.itu.edu.tr/

Серия публикаций

НазваниеLecture Notes in Networks and Systems
ИздательSpringer, Cham
Том1090

конференция

конференция2024 Intelligent and Fuzzy Systems
Сокращенное названиеINFUS 2024
Страна/TерриторияТурция
Период16/07/2418/09/24
Сайт в сети Internet

ID: 123947895