Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Halogen Bonding as a Supramolecular Modulator of Crystal Packing and Exchange Interactions in Nitronyl Nitroxides. / Petunin, P.V.; Tretyakov, E.V.; Shurikov, M.K.; Votkina, D.E.; Romanenko, G.V.; Dmitriev, A.A.; Gritsan, N.P.; Ivanov, D.M.; Gomila, R.M.; Frontera, A.; Resnati, G.; Kukushkin, V.Y.; Postnikov, P.S.
в: Cryst. Growth Des., 2023.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Halogen Bonding as a Supramolecular Modulator of Crystal Packing and Exchange Interactions in Nitronyl Nitroxides
AU - Petunin, P.V.
AU - Tretyakov, E.V.
AU - Shurikov, M.K.
AU - Votkina, D.E.
AU - Romanenko, G.V.
AU - Dmitriev, A.A.
AU - Gritsan, N.P.
AU - Ivanov, D.M.
AU - Gomila, R.M.
AU - Frontera, A.
AU - Resnati, G.
AU - Kukushkin, V.Y.
AU - Postnikov, P.S.
N1 - Export Date: 4 March 2024 CODEN: CGDEF Адрес для корреспонденции: Tretyakov, E.V.; N.D. Zelinsky Institute of Organic Chemistry, Leninsky Avenue 47, Russian Federation; эл. почта: tretyakov@ioc.ac.ru Адрес для корреспонденции: Postnikov, P.S.; Research School of Chemistry & Applied Biomedical Sciences, Lenin Avenue 30, Russian Federation; эл. почта: postnikov@tpu.ru Сведения о финансировании: Ministerio de Ciencia, Innovación y Universidades, MCIU Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Сведения о финансировании: Russian Science Foundation, RSF, 22-73-00077 Сведения о финансировании: European Regional Development Fund, ERDF Сведения о финансировании: Agencia Estatal de Investigación, AEI, PID2020-115637GB-I00 Текст о финансировании 1: This work was supported by the “Mega-grant” project no. 075-15-2021-585 of the Ministry of Science and Higher Education of the Russian Federation and MICIU/AEI of Spain (PID2020-115637GB-I00, FEDER funds). Synthesis of nitroxides was supported by the Russian Science Foundation (project no. 22-73-00077). Пристатейные ссылки: Hicks, R., (2011) Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, p. 588. , ; Ed.; John Wiley & Sons; p ; Tretyakov, E.V., Ovcharenko, V.I., Terent’ev, A.O., Krylov, I.B., Magdesieva, T.V., Mazhukin, D.G., Gritsan, N.P., Conjugated Nitroxides (2022) Russ. Chem. Rev., 91 (2); Nguyen, H.V.T., Chen, Q., Paletta, J.T., Harvey, P., Jiang, Y., Zhang, H., Boska, M.D., Johnson, J.A., Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors (2017) ACS Cent. Sci., 3 (7), pp. 800-811; Khramtsov, V.V., In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes (2018) Antioxid. Redox Signaling, 28 (15), pp. 1365-1377. , . -; https//home.liebertpub.com/ars; Ten, Y.A., Troshkova, N.M., Tretyakov, E.V., From Spin-Labelled Fused Polyaromatic Compounds to Magnetically Active Graphene Nanostructures (2020) Russ. Chem. Rev., 89 (7), pp. 693-712; Slota, M., Keerthi, A., Myers, W.K., Tretyakov, E., Baumgarten, M., Ardavan, A., Sadeghi, H., Bogani, L., Magnetic Edge States and Coherent Manipulation of Graphene Nanoribbons (2018) Nature, 557 (7707), pp. 691-695; Gatteschi, D., Molecular Magnetism: A Basis for New Materials (1994) Adv. Mater., 6 (9), pp. 635-645; Fujita, W., Awaga, K., Room-Temperature Magnetic Bistability in Organic Radical Crystals (1999) Science, 286 (5438), pp. 261-262; Miller, J.S., Drillon, M., (2002) Magnetism: Molecules IV, , ;; Weinheim ; Gaudenzi, R., Burzurí, E., Reta, D., Moreira, I.D., Bromley, S.T., Rovira, C., Veciana, J., Van Der Zant, H.S., Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule (2016) Nano Lett., 16 (3), pp. 2066-2071; Frisenda, R., Gaudenzi, R., Franco, C., Mas-Torrent, M., Concepciórovira, C., Veciana, J., Alcon, I., Van Der Zant, H.S.J., Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction (2015) Nano Lett., 15 (5), pp. 3109-3114; Wang, Y., Frasconi, M., Stoddart, J.F., Introducing Stable Radicals into Molecular Machines (2017) ACS Cent. Sci., 3 (9), pp. 927-935; Ayabe, K., Sato, K., Nakazawa, S., Nishida, S., Sugisaki, K., Ise, T., Morita, Y., Takui, T., Pulsed Electron Spin Nutation Spectroscopy for Weakly Exchange-Coupled Multi-Spin Molecular Systems with Nuclear Hyperfine Couplings: A General Approach to Bi- and Triradicals and Determination of Their Spin Dipolar and Exchange Interactions (2013) Mol. Phys., 111 (18-19), pp. 2767-2787; Romero, F.M., Ziessel, R., Bonnet, M., Pontillon, Y., Ressouche, E., Schweizer, J., Delley, B., Paulsen, C., Evidence for Transmission of Ferromagnetic Interactions through Hydrogen Bonds in Alkyne-Substituted Nitroxide Radicals: Magnetostructural Correlations and Polarized Neutron Diffraction Studies (2000) J. Am. Chem. Soc., 122 (7), pp. 1298-1309; Hicks, R.G., Lemaire, M.T., Öhrström, L., Richardson, J.F., Thompson, L.K., Xu, Z., Strong Supramolecular-Based Magnetic Exchange in π-Stacked Radicals. Structure and Magnetism of a Hydrogen-Bonded Verdazyl Radical: Hydroquinone Molecular Solid (2001) J. Am. Chem. Soc., 123 (29), pp. 7154-7159; Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G., The Halogen Bond (2016) Chem. Rev., 116, pp. 2478-2601; Imakubo, T., Sawa, H., Kato, R., Novel Radical Cation Salts of Organic π-Donors Containing Iodine Atom(s): The First Application of Strong Intermolecular-I···X-(X = CN, Halogen Atom) Interaction to Molecular Conductors (1995) Synth. Met., 73 (2), pp. 117-122; Yamamoto, H.M., Kosaka, Y., Maeda, R., Yamaura, J.I., Nakao, A., Nakamura, T., Kato, R., Supramolecular Insulating Networks Sheathing Conducting Nanowires Based on Organic Radical Cations (2008) ACS Nano, 2 (1), pp. 143-155; Imakubo, T., Shirahata, T., Hervé, K., Ouahab, L., Supramolecular Organic Conductors Based on Diiodo-TTFs and Spherical Halide Ion X- (X = Cl, Br) (2006) J. Mater. Chem., 16 (2), pp. 162-173; Imakubo, T., Murayama, R., Solvent Dependence of Crystal Morphology, Donor/Anion Ratio and Electrical Conductivity in a Series of Hexagonal Supramolecular Organic Conductors Based on Diiodo(Pyrazino)Tetrathiafulvalene (DIP) (2013) CrystEngComm, 15 (16), pp. 3072-3075; Fourmigué, M., Batail, P., Activation of Hydrogen- and Halogen-Bonding Interactions in Tetrathiafulvalene-Based Crystalline Molecular Conductors (2004) Chem. Rev., 104 (11), pp. 5379-5418; Beau, M., Jeannin, O., Lee, S., Barrière, F., Fourmigué, M., Jeon, I.R., Activating Both Halogen and Chalcogen Bonding Interactions in Cation Radical Salts of Iodinated Tetrathiafulavalene Derivatives (2020) ChemPlusChem, 85 (9), pp. 2136-2142; Hervé, K., Cador, O., Golhen, S., Costuas, K., Halet, J.F., Shirahata, T., Muto, T., Ouahab, L., Iodine Substituted Tetrathiafulvalene Radical Cation Salts with [M(Isoq)2(NCS)4]- Anions Where M = Cr III, GaIII: Role of I···S and S···S Contacts on Structural and Magnetic Properties (2006) Chem. Mater., 18 (3), pp. 790-797; Nascimento, M.A., Heyer, E., Less, R.J., Pask, C.M., Arauzo, A., Campo, J., Rawson, J.M., An Investigation of Halogen Bonding as a Structure-Directing Interaction in Dithiadiazolyl Radicals (2020) Cryst. Growth Des., 20 (7), pp. 4313-4324; Pang, X., Zhao, X.R., Wang, H., Sun, H.L., Jin, W.J., Modulating Crystal Packing and Magnetic Properties of Nitroxide Free Radicals by Halogen Bonding (2013) Cryst. Growth Des., 13 (8), pp. 3739-3745; Hanson, G.R., Jensen, P., McMurtrie, J., Rintoul, L., Micallef, A.S., Halogen Bonding between an Isoindoline Nitroxide and 1,4-Diiodotetrafluorobenzene: New Tools and Tectons for Self-Assembling Organic Spin Systems (2009) Chem. −Eur. J., 15 (16), pp. 4156-4164; Shurikov, M.K., Tretyakov, E.V., Petunin, P.V., Votkina, D.E., Romanenko, G.V., Bogomyakov, A.S., Burguera, S., Postnikov, P.S., Self-Assembly of Iodoacetylenyl-Substituted Nitronyl Nitroxides via Halogen Bonding (2023) CrystEngComm, 25 (44), pp. 6152-6161; Espallargas, G.M., Recuenco, A., Romero, F.M., Brammer, L., Libri, S., One-Dimensional Organization of Free Radicals via Halogen Bonding (2012) CrystEngComm, 14 (20), pp. 6381-6383; Boubekeur, K., Syssa-Magalé, J.L., Palvadeau, P., Schöllhorn, B., Self-Assembly of Nitroxide Radicals via Halogen Bonding-Directional NO···I Interactions (2006) Tetrahedron Lett., 47 (8), pp. 1249-1252; Davy, K.J.P., McMurtrie, J., Rintoul, L., Bernhardt, P.V., Micallef, A.S., Vapour Phase Assembly of a Halogen Bonded Complex of an Isoindoline Nitroxide and 1,2-Diiodotetrafluorobenzene (2011) CrystEngComm, 13 (16), pp. 5062-5070; Pang, X., Jin, W.J., Exploring the Halogen Bond Specific Solvent Effects in Halogenated Solvent Systems by ESR Probe (2015) New J. Chem., 39 (7), pp. 5477-5483; Bondi, A., Van Der Waals Volumes and Radii (1964) J. Phys. Chem. A, 68 (3), pp. 441-451; Desiraju, G.R., The Supramolecular Synthon in Crystal Engineering (2000) Stimul. Concepts Chem., pp. 293-306; Desiraju, G.R., Shing Ho, P., Kloo, L., Legon, A.C., Marquardt, R., Metrangolo, P., Politzer, P., Rissanen, K., Definition of the Halogen Bond (IUPAC Recommendations 2013) (2013) Pure Appl. Chem., 85 (8), pp. 1711-1713; Gorini, L., Caneschi, A., Menichetti, S., TPAP/NMO System as a Novel Method for the Synthesis of Nitronyl Nitroxide Radicals (2006) Synlett, 2006 (6), pp. 948-950; Tretyakov, E., Tkacheva, A., Romanenko, G., Bogomyakov, A., Stass, D., Maryasov, A., Zueva, E., Ovcharenko, V., (Pyrrole-2,5-Diyl)-Bis(Nitronyl Nitroxide) and-Bis(Iminonitroxide): Specific Features of the Synthesis, Structure, and Magnetic Properties (2020) Molecules, 25 (7), p. 1503; Tretyakov, E., Keerthi, A., Baumgarten, M., Veber, S., Fedin, M., Gorbunov, D., Shundrina, I., Gritsan, N., The Design of Radical Stacks: Nitronyl-Nitroxide-Substituted Heteropentacenes (2017) ChemistryOpen, 6 (5), pp. 642-652; Haraguchi, M., Tretyakov, E., Gritsan, N., Romanenko, G., Gorbunov, D., Bogomyakov, A., Maryunina, K., Okada, K., (Azulene-1,3-Diyl)-Bis(Nitronyl Nitroxide) and (Azulene-1,3-Diyl)-Bis(Iminonitroxide) and Their Copper Complexes (2017) Chem. - Asian J., 12 (22), pp. 2929-2941; Eccles, K.S., Morrison, R.E., Stokes, S.P., O’Mahony, G.E., Hayes, J.A., Kelly, D.M., O’Boyle, N.M., Lawrence, S.E., Utilizing Sulfoxide•••iodine Halogen Bonding for Cocrystallization (2012) Cryst. Growth Des., 12 (6), pp. 2969-2977; Tretyakov, E.V., Ovcharenko, V.I., The Chemistry of Nitroxide Radicals in the Molecular Design of Magnets (2009) Russ. Chem. Rev., 78 (11), pp. 971-1012; Katlenok, E.A., Haukka, M., Levin, O.V., Frontera, A., Kukushkin, V.Y., Supramolecular Assembly of Metal Complexes by (Aryl)I···d[PtII] Halogen Bonds (2020) Chem. −Eur. J., 26 (34), pp. 7692-7701; Ostras, A.S., Ivanov, D.M., Novikov, A.S., Tolstoy, P.M., Phosphine Oxides as Spectroscopic Halogen Bond Descriptors: IR and NMR Correlations with Interatomic Distances and Complexation Energy (2020) Molecules, 25 (6), p. 1406; Vener, M.V., Egorova, A.N., Churakov, A.V., Tsirelson, V.G., Intermolecular Hydrogen Bond Energies in Crystals Evaluated Using Electron Density Properties: DFT Computations with Periodic Boundary Conditions (2012) J. Comput. Chem., 33 (29), pp. 2303-2309; Landis, C.R., Weinhold, F., Frenking, G., Shaik, S., The NBO View of Chemical Bonding (2014) The Chemical Bond: Fundamental Aspects of Chemical Bonding, pp. 91-120. , ; . In;; Eds.; Wiley; pp -; ; Coronado, E., Molecular Magnetism: From Chemical Design to Spin Control in Molecules, Materials and Devices (2020) Nat. Rev. Mater., 5 (2), pp. 87-104; Eusterwiemann, S., Doerenkamp, C., Dresselhaus, T., Janka, O., Daniliuc, C.G., Pöttgen, R., Studer, A., Neugebauer, J., Ferro- or Antiferromagnetism? Heisenberg Chains in the Crystal Structures of Verdazyl Radicals (2018) Phys. Chem. Chem. Phys., 20 (35), pp. 22902-22908; Petunin, P.V., Rybalova, T.V., Trusova, M.E., Uvarov, M.N., Kazantsev, M.S., Mostovich, E.A., Postulka, L., Baumgarten, M., A Weakly Antiferromagnetically Coupled Biradical Combining Verdazyl with Nitronylnitroxide Units (2020) ChemPlusChem, 85 (1), pp. 159-162; Tretyakov, E.V., Zhivetyeva, S.I., Petunin, P.V., Gorbunov, D.E., Gritsan, N.P., Bagryanskaya, I.Y., Bogomyakov, A.S., Ovcharenko, V.I., Ferromagnetically Coupled S = 1 Chains in Crystals of Verdazyl-Nitronyl Nitroxide Diradicals (2020) Angew. Chem., Int. Ed., 59 (46), pp. 20704-20710; Tretyakov, E.V., Petunin, P.V., Zhivetyeva, S.I., Gorbunov, D.E., Gritsan, N.P., Fedin, M.V., Stass, D.V., Ovcharenko, V.I., Platform for High-Spin Molecules: A Verdazyl-Nitronyl Nitroxide Triradical with Quartet Ground State (2021) J. Am. Chem. Soc., 143 (21), pp. 8164-8176; Deumal, M., Cirujeda, J., Veciana, J., Novoa, J., Structure-Magnetism Relationships in A-Nitronyl Nitroxide Radicals (1999) Chem. -Eur. J., 5 (5), pp. 1631-1642; Novoa, J.J., Deumal, M., The Mechanism of the Through-Space Magnetic Interactions in Purely Organic Molecular Magnets (2001) π-Electron Magnetism: From Molecules to Magnetic Materials, 100, pp. 33-60. , ; . In Structure and Bonding; Springer Berlin Heidelberg; Vol. pp -; ; Mcconnell, H.M., Ferromagnetism in Solid Free Radicals (1963) J. Chem. Phys., 39 (7), p. 1910
PY - 2023
Y1 - 2023
N2 - Through the interaction of a halogen bond donor (1,4-diiodotetrafluorobenzene; 1,4-FIB) with isomers of pyridyl-substituted nitronyl nitroxides (Py-NN), five novel cocrystals were constructed via halogen bonding. The cocrystals (pPy-NN)n·1,4-FIB (n = 1, 2, 4) and (mPy-NN)n·1,4-FIB (n = 1, 2) are represented by the discrete clusters Py-NN·1,4-FIB·NN-Py, cyclic tetrameric structures (pPy-NN)4·(1,4-FIB)4, or one-dimensional (1D) zigzag chains. Density functional theory calculations were used to analyze the nature of the halogen bonds and to compare the strengths of I···NPy and I···ONO interactions. The halogen bonds were shown to be quite strong, ranging from 6.4 to 9.0 kcal/mol, according to the QTAIM analysis. In addition, quantum chemical analyses revealed relatively weak exchange interactions of both ferromagnetic and antiferromagnetic nature, indicating a modulating effect of the halogen bonding on magnetic properties. These findings point to the potential usefulness of halogen bonding interactions for promoting the self-assembly of stable organic radicals for further use in the preparation of exchange-coupled organic spin systems. © 2024 American Chemical Society
AB - Through the interaction of a halogen bond donor (1,4-diiodotetrafluorobenzene; 1,4-FIB) with isomers of pyridyl-substituted nitronyl nitroxides (Py-NN), five novel cocrystals were constructed via halogen bonding. The cocrystals (pPy-NN)n·1,4-FIB (n = 1, 2, 4) and (mPy-NN)n·1,4-FIB (n = 1, 2) are represented by the discrete clusters Py-NN·1,4-FIB·NN-Py, cyclic tetrameric structures (pPy-NN)4·(1,4-FIB)4, or one-dimensional (1D) zigzag chains. Density functional theory calculations were used to analyze the nature of the halogen bonds and to compare the strengths of I···NPy and I···ONO interactions. The halogen bonds were shown to be quite strong, ranging from 6.4 to 9.0 kcal/mol, according to the QTAIM analysis. In addition, quantum chemical analyses revealed relatively weak exchange interactions of both ferromagnetic and antiferromagnetic nature, indicating a modulating effect of the halogen bonding on magnetic properties. These findings point to the potential usefulness of halogen bonding interactions for promoting the self-assembly of stable organic radicals for further use in the preparation of exchange-coupled organic spin systems. © 2024 American Chemical Society
KW - Chemical bonds
KW - Crystals
KW - Density functional theory
KW - Exchange interactions
KW - Nitrogen oxides
KW - Quantum chemistry
KW - Co-crystals
KW - Crystal packings
KW - Density-functional theory calculations
KW - Halogen bonding
KW - Halogen bonds
KW - Nitronyl nitroxides
KW - One-dimensional
KW - Pyridyl
KW - Tetrameric structures
KW - Zigzag chains
KW - Isomers
U2 - 10.1021/acs.cgd.3c01442
DO - 10.1021/acs.cgd.3c01442
M3 - статья
JO - Crystal Growth and Design
JF - Crystal Growth and Design
SN - 1528-7483
ER -
ID: 117320426