Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Groups Acting on Dendrons. / Malyutin, A. V.
в: Journal of Mathematical Sciences (United States), Том 212, № 5, 01.02.2016, стр. 558-565.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Groups Acting on Dendrons
AU - Malyutin, A. V.
N1 - Malyutin, A.V. Groups Acting on Dendrons. J Math Sci 212, 558–565 (2016). https://doi.org/10.1007/s10958-016-2688-2
PY - 2016/2/1
Y1 - 2016/2/1
N2 - A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.
AB - A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.
KW - Automorphism Group
KW - Compact Space
KW - Cayley Graph
KW - Hyperbolic Group
KW - Dendritic Space
UR - http://www.scopus.com/inward/record.url?scp=84953410388&partnerID=8YFLogxK
U2 - 10.1007/s10958-016-2688-2
DO - 10.1007/s10958-016-2688-2
M3 - Article
AN - SCOPUS:84953410388
VL - 212
SP - 558
EP - 565
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 47487871