Standard

Groups Acting on Dendrons. / Malyutin, A. V.

в: Journal of Mathematical Sciences (United States), Том 212, № 5, 01.02.2016, стр. 558-565.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Malyutin, AV 2016, 'Groups Acting on Dendrons', Journal of Mathematical Sciences (United States), Том. 212, № 5, стр. 558-565. https://doi.org/10.1007/s10958-016-2688-2

APA

Malyutin, A. V. (2016). Groups Acting on Dendrons. Journal of Mathematical Sciences (United States), 212(5), 558-565. https://doi.org/10.1007/s10958-016-2688-2

Vancouver

Malyutin AV. Groups Acting on Dendrons. Journal of Mathematical Sciences (United States). 2016 Февр. 1;212(5):558-565. https://doi.org/10.1007/s10958-016-2688-2

Author

Malyutin, A. V. / Groups Acting on Dendrons. в: Journal of Mathematical Sciences (United States). 2016 ; Том 212, № 5. стр. 558-565.

BibTeX

@article{51dd602f067d487794c735e8a7fac022,
title = "Groups Acting on Dendrons",
abstract = "A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.",
keywords = "Automorphism Group, Compact Space, Cayley Graph, Hyperbolic Group, Dendritic Space",
author = "Malyutin, {A. V.}",
note = "Malyutin, A.V. Groups Acting on Dendrons. J Math Sci 212, 558–565 (2016). https://doi.org/10.1007/s10958-016-2688-2",
year = "2016",
month = feb,
day = "1",
doi = "10.1007/s10958-016-2688-2",
language = "English",
volume = "212",
pages = "558--565",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Groups Acting on Dendrons

AU - Malyutin, A. V.

N1 - Malyutin, A.V. Groups Acting on Dendrons. J Math Sci 212, 558–565 (2016). https://doi.org/10.1007/s10958-016-2688-2

PY - 2016/2/1

Y1 - 2016/2/1

N2 - A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.

AB - A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.

KW - Automorphism Group

KW - Compact Space

KW - Cayley Graph

KW - Hyperbolic Group

KW - Dendritic Space

UR - http://www.scopus.com/inward/record.url?scp=84953410388&partnerID=8YFLogxK

U2 - 10.1007/s10958-016-2688-2

DO - 10.1007/s10958-016-2688-2

M3 - Article

AN - SCOPUS:84953410388

VL - 212

SP - 558

EP - 565

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 47487871