DOI

The article examines the issues of monitoring performance in microservice architectures. We explore the problem of forecasting performance indicators as well as fault propagation in such systems, which are distributed and have independent service deployments. The paper addresses these issues by proposing a novel approach that uses multimetric time series data to establish causal relationships between microservices and build graph neural networks based on revealed system dependencies. The method’s goal is to proactively forecast performance indicators and fault propagation in order to assure the resilience and reliability of microservices. Various graph neural network architectures are discussed. The best one DCRNN uses a diffusion convolutional recurrent neural network in a basis and is able to predict well both on data with and without anomalies
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2024 Workshops
Страницы343–357
Число страниц15
DOI
СостояниеОпубликовано - 22 авг 2024
СобытиеThe 24th International Conference on Computational Science and Its Applications, ICCSA 2024 - Ханой, Вьетнам
Продолжительность: 1 июл 20244 июл 2024
https://2024.iccsa.org/

Серия публикаций

НазваниеLecture Notes in Computer Science
ИздательSpringer Nature
Том14821
ISSN (печатное издание)0302-9743

конференция

конференцияThe 24th International Conference on Computational Science and Its Applications, ICCSA 2024
Сокращенное названиеICCSA
Страна/TерриторияВьетнам
ГородХаной
Период1/07/244/07/24
Сайт в сети Internet

ID: 123266494