Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
We study the resolution complexity of Tseitin formulas over arbitrary rings in terms of combinatorial properties of graphs. We give some evidence that an expansion of a graph is a good characterization of the resolution complexity of Tseitin formulas. We extend the method of Ben-Sasson and Wigderson of proving lower bounds for the size of resolution proofs to constraint satisfaction problems under an arbitrary finite alphabet. For Tseitin formulas under the alphabet of cardinality d we provide a lower bound d e(G)-k for tree-like resolution complexity that is stronger than the one that can be obtained by the Ben-Sasson and Wigderson method. Here k is an upper bound on the degree of the graph and e(G) is the graph expansion that is equal to the minimal cut such that none of its parts is more than twice bigger than the other. We give a formal argument why a large graph expansion is necessary for lower bounds. Let G = âŒ
| Язык оригинала | английский |
|---|---|
| Название основной публикации | Computer Science - Theory and Applications - 8th International Computer Science Symposium in Russia, CSR 2013 |
| Страницы | 162-173 |
| Число страниц | 12 |
| DOI | |
| Состояние | Опубликовано - 29 ноя 2013 |
| Событие | 8th International Computer Science Symposium in Russia, CSR 2013 - Ekaterinburg, Российская Федерация Продолжительность: 25 июн 2013 → 29 июн 2013 |
| Название | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
|---|---|
| Том | 7913 LNCS |
| ISSN (печатное издание) | 0302-9743 |
| ISSN (электронное издание) | 1611-3349 |
| конференция | 8th International Computer Science Symposium in Russia, CSR 2013 |
|---|---|
| Страна/Tерритория | Российская Федерация |
| Город | Ekaterinburg |
| Период | 25/06/13 → 29/06/13 |
ID: 49786016