DOI

We show the existence of a real analytic isomorphism between the space of the impedance function ρ of the Sturm–Liouville problem −ρ−22f′)′ +uf on (0, 1), where u is a function of ρ, ρ′, ρ″, and that of potential p of the Schrödinger equation −y″ +py on (0, 1), keeping their boundary conditions and spectral data. This mapping is associated with the classical Liouville transformation f → ρf, and yields a global isomorphism between solutions of inverse problems for the Sturm–Liouville equations of the impedance form and those of the Schrödinger equations.

Язык оригиналаанглийский
Страницы (с-по)51-68
Число страниц18
ЖурналRussian Journal of Mathematical Physics
Том24
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 2017

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 35631416