Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We show the existence of a real analytic isomorphism between the space of the impedance function ρ of the Sturm–Liouville problem −ρ−2(ρ2f′)′ +uf on (0, 1), where u is a function of ρ, ρ′, ρ″, and that of potential p of the Schrödinger equation −y″ +py on (0, 1), keeping their boundary conditions and spectral data. This mapping is associated with the classical Liouville transformation f → ρf, and yields a global isomorphism between solutions of inverse problems for the Sturm–Liouville equations of the impedance form and those of the Schrödinger equations.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 51-68 |
Число страниц | 18 |
Журнал | Russian Journal of Mathematical Physics |
Том | 24 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 янв 2017 |
ID: 35631416