DOI

Let Ω be a convex planar domain, with no curvature or regularity assumption on the boundary. Let Nθ(R) = card{RΩθ∩ℤ2}, where Ωθ denotes the rotation of Ω by θ. It is proved that, up to a small logarithmic transgression, Nθ(R) = |Ω\R2 + O(R2/3), for almost every rotation. A refined result based on the fractal structure of the image of the boundary of Ω under the Gauss map is also obtained.

Язык оригиналаанглийский
Страницы (с-по)107-117
Число страниц11
ЖурналMathematika
Том48
Номер выпуска1-2
DOI
СостояниеОпубликовано - 2001

    Предметные области Scopus

  • Математика (все)

ID: 86292039