Standard

Geometric presentation for the cohomology ring of polygon spaces. / Nekrasov, I. ; Panina, G. .

в: АЛГЕБРА И АНАЛИЗ, Том 31, № 1, 2019, стр. 80-91.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Nekrasov, I & Panina, G 2019, 'Geometric presentation for the cohomology ring of polygon spaces', АЛГЕБРА И АНАЛИЗ, Том. 31, № 1, стр. 80-91.

APA

Vancouver

Author

Nekrasov, I. ; Panina, G. . / Geometric presentation for the cohomology ring of polygon spaces. в: АЛГЕБРА И АНАЛИЗ. 2019 ; Том 31, № 1. стр. 80-91.

BibTeX

@article{7fa9415b086846f8ae7d2aa58c9f5463,
title = "Geometric presentation for the cohomology ring of polygon spaces",
abstract = "We describe the cohomology ring of the moduli space of a flexible polygon in geometrically meaningful terms. We propose two presentations, both are computation friendly: there are simple rules for the cup product.",
keywords = "polygonal linkage, Chern class, Euler class, intersection theory, moduli space",
author = "I. Nekrasov and G. Panina",
note = "I. Nekrasov, G. Panina, “Geometric presentation for the cohomology ring of polygon spaces”, Алгебра и анализ, 31:1 (2019), 80–91; St. Petersburg Math. J., 31:1 (2020), 59–67",
year = "2019",
language = "English",
volume = "31",
pages = "80--91",
journal = "АЛГЕБРА И АНАЛИЗ",
issn = "0234-0852",
publisher = "Издательство {"}Наука{"}",
number = "1",

}

RIS

TY - JOUR

T1 - Geometric presentation for the cohomology ring of polygon spaces

AU - Nekrasov, I.

AU - Panina, G.

N1 - I. Nekrasov, G. Panina, “Geometric presentation for the cohomology ring of polygon spaces”, Алгебра и анализ, 31:1 (2019), 80–91; St. Petersburg Math. J., 31:1 (2020), 59–67

PY - 2019

Y1 - 2019

N2 - We describe the cohomology ring of the moduli space of a flexible polygon in geometrically meaningful terms. We propose two presentations, both are computation friendly: there are simple rules for the cup product.

AB - We describe the cohomology ring of the moduli space of a flexible polygon in geometrically meaningful terms. We propose two presentations, both are computation friendly: there are simple rules for the cup product.

KW - polygonal linkage

KW - Chern class

KW - Euler class

KW - intersection theory

KW - moduli space

UR - http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1628&option_lang=rus

UR - https://elibrary.ru/item.asp?id=37067022

M3 - Article

VL - 31

SP - 80

EP - 91

JO - АЛГЕБРА И АНАЛИЗ

JF - АЛГЕБРА И АНАЛИЗ

SN - 0234-0852

IS - 1

ER -

ID: 49857172