DOI

We study non-reversible Finsler metrics with constant flag curvature 1 on S2 and show that the geodesic flow of every such metric is conjugate to that of one of Katok's examples, which form a 1- parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metric with constant positive flag curvature is completely integrable. Finally, we give an example of a Finsler metric on S2with positive flag curvature such that no two closed geodesics intersect and show that this is not possible when the metric is reversible or has constant flag curvature.

Язык оригиналаанглийский
Страницы (с-по)1-22
Число страниц22
ЖурналJournal of Differential Geometry
Том117
Номер выпуска1
DOI
СостояниеОпубликовано - янв 2021

    Предметные области Scopus

  • Анализ
  • Геометрия и топология
  • Алгебра и теория чисел

ID: 75047811