Standard

Generalized Vilenkin Groups. / Vodolazov, Aleksandr M.; Скопина, Мария Александровна.

в: Mathematical Notes, Том 116, № 4, 17.05.2024, стр. 588-599.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vodolazov, AM & Скопина, МА 2024, 'Generalized Vilenkin Groups', Mathematical Notes, Том. 116, № 4, стр. 588-599. https://doi.org/10.1134/S0001434624090190

APA

Vodolazov, A. M., & Скопина, М. А. (2024). Generalized Vilenkin Groups. Mathematical Notes, 116(4), 588-599. https://doi.org/10.1134/S0001434624090190

Vancouver

Vodolazov AM, Скопина МА. Generalized Vilenkin Groups. Mathematical Notes. 2024 Май 17;116(4):588-599. https://doi.org/10.1134/S0001434624090190

Author

Vodolazov, Aleksandr M. ; Скопина, Мария Александровна. / Generalized Vilenkin Groups. в: Mathematical Notes. 2024 ; Том 116, № 4. стр. 588-599.

BibTeX

@article{998b0ce20d0448d897fe3dffe87448ec,
title = "Generalized Vilenkin Groups",
abstract = "Generalized Vilenkin groups are introduced and studied. To such a group, there corresponds an arbitrary finite Abelian group instead of a cyclic group in the case of classical Vilenkin groups. The foundations of harmonic analysis and methods for constructing wavelets on generalized Vilenkin groups are developed. It is proved that the additive group of any local field of positive characteristic is a generalized Vilenkin group.",
author = "Vodolazov, {Aleksandr M.} and Скопина, {Мария Александровна}",
year = "2024",
month = may,
day = "17",
doi = "10.1134/S0001434624090190",
language = "English",
volume = "116",
pages = "588--599",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "Pleiades Publishing",
number = "4",

}

RIS

TY - JOUR

T1 - Generalized Vilenkin Groups

AU - Vodolazov, Aleksandr M.

AU - Скопина, Мария Александровна

PY - 2024/5/17

Y1 - 2024/5/17

N2 - Generalized Vilenkin groups are introduced and studied. To such a group, there corresponds an arbitrary finite Abelian group instead of a cyclic group in the case of classical Vilenkin groups. The foundations of harmonic analysis and methods for constructing wavelets on generalized Vilenkin groups are developed. It is proved that the additive group of any local field of positive characteristic is a generalized Vilenkin group.

AB - Generalized Vilenkin groups are introduced and studied. To such a group, there corresponds an arbitrary finite Abelian group instead of a cyclic group in the case of classical Vilenkin groups. The foundations of harmonic analysis and methods for constructing wavelets on generalized Vilenkin groups are developed. It is proved that the additive group of any local field of positive characteristic is a generalized Vilenkin group.

U2 - 10.1134/S0001434624090190

DO - 10.1134/S0001434624090190

M3 - Article

VL - 116

SP - 588

EP - 599

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 4

ER -

ID: 129822833