DOI

We develop a generalized optimization framework for graphbased semi-supervised learning. The framework gives as particular cases the Standard Laplacian, Normalized Laplacian and PageRank based methods. We have also provided new probabilistic interpretation based on random walks and characterized the limiting behaviour of the methods. The random walk based interpretation allows us to explain differences between the performances of methods with different smoothing kernels. It appears that the PageRank based method is robust with respect to the choice of the regularization parameter and the labelled data. We illustrate our theoretical results with two realistic datasets, characterizing different challenges: Les Miserables characters social network and Wikipedia hyper-link graph. The graphbased semi-supervised learning classifies the Wikipedia articles with very good precision and perfect recall employing only the information about the hyper-text links.

Язык оригиналаанглийский
Название основной публикацииProceedings of the 12th SIAM International Conference on Data Mining, SDM 2012
ИздательSociety for Industrial and Applied Mathematics
Страницы966-974
Число страниц9
ISBN (печатное издание)9781611972320
DOI
СостояниеОпубликовано - 2012
Событие12th SIAM International Conference on Data Mining, SDM 2012 - Anaheim, CA, Соединенные Штаты Америки
Продолжительность: 26 апр 201228 апр 2012

Серия публикаций

НазваниеProceedings of the 12th SIAM International Conference on Data Mining, SDM 2012

конференция

конференция12th SIAM International Conference on Data Mining, SDM 2012
Страна/TерриторияСоединенные Штаты Америки
ГородAnaheim, CA
Период26/04/1228/04/12

    Предметные области Scopus

  • Прикладные компьютерные науки

ID: 98680839