Standard

Generalization of the "maximum cross section method" for the simulation of distributions. / Ermakov, S. M.; Zhiglyavskii, A. A.

в: USSR Computational Mathematics and Mathematical Physics, Том 18, № 3, 1978, стр. 230-235.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ermakov, SM & Zhiglyavskii, AA 1978, 'Generalization of the "maximum cross section method" for the simulation of distributions', USSR Computational Mathematics and Mathematical Physics, Том. 18, № 3, стр. 230-235. https://doi.org/10.1016/0041-5553(78)90185-4

APA

Ermakov, S. M., & Zhiglyavskii, A. A. (1978). Generalization of the "maximum cross section method" for the simulation of distributions. USSR Computational Mathematics and Mathematical Physics, 18(3), 230-235. https://doi.org/10.1016/0041-5553(78)90185-4

Vancouver

Ermakov SM, Zhiglyavskii AA. Generalization of the "maximum cross section method" for the simulation of distributions. USSR Computational Mathematics and Mathematical Physics. 1978;18(3):230-235. https://doi.org/10.1016/0041-5553(78)90185-4

Author

Ermakov, S. M. ; Zhiglyavskii, A. A. / Generalization of the "maximum cross section method" for the simulation of distributions. в: USSR Computational Mathematics and Mathematical Physics. 1978 ; Том 18, № 3. стр. 230-235.

BibTeX

@article{5b230bdf56be4647a513b98557f9f297,
title = "Generalization of the {"}maximum cross section method{"} for the simulation of distributions",
abstract = "IT IS shown that a random vector whose distribution satisfies some integral equation, can be realized by the simulation of a homogeneous Markov chain. Examples are given confirming the generality and efficiency of the proposed method of simulation.",
author = "Ermakov, {S. M.} and Zhiglyavskii, {A. A.}",
year = "1978",
doi = "10.1016/0041-5553(78)90185-4",
language = "English",
volume = "18",
pages = "230--235",
journal = "Computational Mathematics and Mathematical Physics",
issn = "0965-5425",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "3",

}

RIS

TY - JOUR

T1 - Generalization of the "maximum cross section method" for the simulation of distributions

AU - Ermakov, S. M.

AU - Zhiglyavskii, A. A.

PY - 1978

Y1 - 1978

N2 - IT IS shown that a random vector whose distribution satisfies some integral equation, can be realized by the simulation of a homogeneous Markov chain. Examples are given confirming the generality and efficiency of the proposed method of simulation.

AB - IT IS shown that a random vector whose distribution satisfies some integral equation, can be realized by the simulation of a homogeneous Markov chain. Examples are given confirming the generality and efficiency of the proposed method of simulation.

UR - http://www.scopus.com/inward/record.url?scp=49349139747&partnerID=8YFLogxK

U2 - 10.1016/0041-5553(78)90185-4

DO - 10.1016/0041-5553(78)90185-4

M3 - Article

AN - SCOPUS:49349139747

VL - 18

SP - 230

EP - 235

JO - Computational Mathematics and Mathematical Physics

JF - Computational Mathematics and Mathematical Physics

SN - 0965-5425

IS - 3

ER -

ID: 86606294