Standard

Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes. / Maksiutenko, Evgeniia M.; Barbitoff, Yury A.; Matveenko, Andrew G.; Moskalenko, Svetlana E.; Zhouravleva, Galina A.

в: Genes, Том 12, № 12, 2019, 12.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{3398c91cac8f47aaa2b30f60f6bf39e3,
title = "Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes",
abstract = "Protein synthesis (translation) is one of the fundamental processes occurring in the cells of living organisms. Translation can be divided into three key steps: initiation, elongation, and termination. In the yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 and eRF3. These factors are encoded by the SUP45 and SUP35 genes, which are essential; deletion of any of them leads to the death of yeast cells. However, viable strains with nonsense mutations in both the SUP35 and SUP45 genes were previously obtained in several groups. The survival of such mutants clearly involves feedback control of premature stop codon readthrough; however, the exact molecular basis of such feedback control remain unclear. To investigate the genetic factors supporting the viability of these SUP35 and SUP45 nonsense mutants, we performed whole-genome sequencing of strains carrying mutant sup35-n and sup45-n alleles; while no common SNPs or indels were found in these genomes, we discovered a systematic increase in the copy number of the plasmids carrying mutant sup35-n and sup45-n alleles. We used the qPCR method which confirmed the differences in the relative number of SUP35 and SUP45 gene copies between strains carrying wild-type or mutant alleles of SUP35 and SUP45 genes. Moreover, we compare the number of copies of the SUP35 and SUP45 genes in strains carrying different nonsense mutant variants of these genes as a single chromosomal copy. qPCR results indicate that the number of mutant gene copies is increased compared to the wild-type control. In case of several sup45-n alleles, this was due to a disomy of the entire chromosome II, while for the sup35-218 mutation we observed a local duplication of a segment of chromosome IV containing the SUP35 gene. Taken together, our results indicate that gene amplification is a common mechanism of adaptation to nonsense mutations in release factor genes in yeast.",
keywords = "Amplification, Chromosome instability, ERF1, ERF3, Nonsense suppression, Plasmid copy number, Release factors, Translation termination, WGS, Yeast",
author = "Maksiutenko, {Evgeniia M.} and Barbitoff, {Yury A.} and Matveenko, {Andrew G.} and Moskalenko, {Svetlana E.} and Zhouravleva, {Galina A.}",
note = "Publisher Copyright: {\textcopyright} 2021 by the authors. Licensee MDPI, Basel, Switzerland.",
year = "2021",
month = dec,
doi = "10.3390/genes12122019",
language = "English",
volume = "12",
journal = "Genes",
issn = "2073-4425",
publisher = "MDPI AG",
number = "12",

}

RIS

TY - JOUR

T1 - Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes

AU - Maksiutenko, Evgeniia M.

AU - Barbitoff, Yury A.

AU - Matveenko, Andrew G.

AU - Moskalenko, Svetlana E.

AU - Zhouravleva, Galina A.

N1 - Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

PY - 2021/12

Y1 - 2021/12

N2 - Protein synthesis (translation) is one of the fundamental processes occurring in the cells of living organisms. Translation can be divided into three key steps: initiation, elongation, and termination. In the yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 and eRF3. These factors are encoded by the SUP45 and SUP35 genes, which are essential; deletion of any of them leads to the death of yeast cells. However, viable strains with nonsense mutations in both the SUP35 and SUP45 genes were previously obtained in several groups. The survival of such mutants clearly involves feedback control of premature stop codon readthrough; however, the exact molecular basis of such feedback control remain unclear. To investigate the genetic factors supporting the viability of these SUP35 and SUP45 nonsense mutants, we performed whole-genome sequencing of strains carrying mutant sup35-n and sup45-n alleles; while no common SNPs or indels were found in these genomes, we discovered a systematic increase in the copy number of the plasmids carrying mutant sup35-n and sup45-n alleles. We used the qPCR method which confirmed the differences in the relative number of SUP35 and SUP45 gene copies between strains carrying wild-type or mutant alleles of SUP35 and SUP45 genes. Moreover, we compare the number of copies of the SUP35 and SUP45 genes in strains carrying different nonsense mutant variants of these genes as a single chromosomal copy. qPCR results indicate that the number of mutant gene copies is increased compared to the wild-type control. In case of several sup45-n alleles, this was due to a disomy of the entire chromosome II, while for the sup35-218 mutation we observed a local duplication of a segment of chromosome IV containing the SUP35 gene. Taken together, our results indicate that gene amplification is a common mechanism of adaptation to nonsense mutations in release factor genes in yeast.

AB - Protein synthesis (translation) is one of the fundamental processes occurring in the cells of living organisms. Translation can be divided into three key steps: initiation, elongation, and termination. In the yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 and eRF3. These factors are encoded by the SUP45 and SUP35 genes, which are essential; deletion of any of them leads to the death of yeast cells. However, viable strains with nonsense mutations in both the SUP35 and SUP45 genes were previously obtained in several groups. The survival of such mutants clearly involves feedback control of premature stop codon readthrough; however, the exact molecular basis of such feedback control remain unclear. To investigate the genetic factors supporting the viability of these SUP35 and SUP45 nonsense mutants, we performed whole-genome sequencing of strains carrying mutant sup35-n and sup45-n alleles; while no common SNPs or indels were found in these genomes, we discovered a systematic increase in the copy number of the plasmids carrying mutant sup35-n and sup45-n alleles. We used the qPCR method which confirmed the differences in the relative number of SUP35 and SUP45 gene copies between strains carrying wild-type or mutant alleles of SUP35 and SUP45 genes. Moreover, we compare the number of copies of the SUP35 and SUP45 genes in strains carrying different nonsense mutant variants of these genes as a single chromosomal copy. qPCR results indicate that the number of mutant gene copies is increased compared to the wild-type control. In case of several sup45-n alleles, this was due to a disomy of the entire chromosome II, while for the sup35-218 mutation we observed a local duplication of a segment of chromosome IV containing the SUP35 gene. Taken together, our results indicate that gene amplification is a common mechanism of adaptation to nonsense mutations in release factor genes in yeast.

KW - Amplification

KW - Chromosome instability

KW - ERF1

KW - ERF3

KW - Nonsense suppression

KW - Plasmid copy number

KW - Release factors

KW - Translation termination

KW - WGS

KW - Yeast

UR - http://www.scopus.com/inward/record.url?scp=85121573336&partnerID=8YFLogxK

U2 - 10.3390/genes12122019

DO - 10.3390/genes12122019

M3 - Article

AN - SCOPUS:85121573336

VL - 12

JO - Genes

JF - Genes

SN - 2073-4425

IS - 12

M1 - 2019

ER -

ID: 91742998