Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The gas-phase Lewis acidity of group 13 element aryl and perfluorinated aryl derivatives E(C6H5)3, E(C 6H4F)3, and E(C5F5) 3 (E = B, Al, Ga) toward different donor molecules (NH3, H2O, PH3, H-, CH3-, F-) has been theoretically studied at the RI-BP86/def2-TZVPP level of theory. The following order of the acceptor ability has been established: E(C6H5)3 ≈ E(C6H 4F)3 < E(C6F5)3 ≈ ECl3. The acceptor strengths of E(C6H5) 3 and E(C6H4F)3 are comparable to each other but much weaker compared to E(C6H5) 3, which has a similar acceptor strength to those of the corresponding trihalides ECl3. The acceptor ability of ER3 decreases in the order Al > Ga > B. In the gas phase, Al(C 6F5)3 is found to be a stronger Lewis acid than B(C6F5)3 toward all electron donors but H -. In contrast to AlCl3, which forms stable dimers, Al(C6F3)3 is monomelic and tiierefore has a much higher Lewis acid reactivity . The reactivity of perfluorinated derivatives E(C5F5)3 (E = B, Al, Ga) toward ammonolysis and hydrolysis processes and L2ZrMe2 (L = Cl, Cp, Cp*) as cocatalysts in olefin polymerization is also discussed.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 371-380 |
Число страниц | 10 |
Журнал | Organometallics |
Том | 27 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 11 фев 2008 |
ID: 17372313