Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions. / Bakharev, F.L.; Nazarov, S.A.
в: Siberian Mathematical Journal, Том 56, № 4, 2015, стр. 575-592.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions
AU - Bakharev, F.L.
AU - Nazarov, S.A.
PY - 2015
Y1 - 2015
N2 - We consider an acoustic waveguide (the Neumann problem for the Helmholtz equation) shaped like a periodic family of identical beads on a thin cylinder rod. Under minor restrictions on the bead and rod geometry, we use asymptotic analysis to establish the opening of spectral gaps and find their geometric characteristics. The main technical difficulties lie in the justification of asymptotic formulas for the eigenvalues of the model problem on the periodicity cell due to its arbitrary shape.
AB - We consider an acoustic waveguide (the Neumann problem for the Helmholtz equation) shaped like a periodic family of identical beads on a thin cylinder rod. Under minor restrictions on the bead and rod geometry, we use asymptotic analysis to establish the opening of spectral gaps and find their geometric characteristics. The main technical difficulties lie in the justification of asymptotic formulas for the eigenvalues of the model problem on the periodicity cell due to its arbitrary shape.
U2 - 10.1134/S0037446615040023
DO - 10.1134/S0037446615040023
M3 - Article
VL - 56
SP - 575
EP - 592
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 4
ER -
ID: 3952668