Ссылки

DOI

Abstract: An analogue of a neural network, the number of layers and the number of cells in which may be changed during its retraining is suggested in the paper. The main instrument for constructing such a network is extraction of maximal common properties of pairs of objects in the training set and of that ones used for retraining. The degree of coincidence of a recognized object with the one presented in the training set may be calculated using their maximal common properties. Computational complexities of such a network construction, recognition process and the network retraining are proved. A brief description of a similar network proposed by the author earlier for complex structured objects described using predicate calculus is presented. The analysis of comparison of computational complexity of a complex structured object recognition with various methods of their description is given.
Язык оригиналаанглийский
Страницы (с-по)S10-S17
Число страниц10
ЖурналProgramming and Computer Software
Том50
Номер выпускаSuppl 1
DOI
СостояниеОпубликовано - ноя 2024

    Области исследований

  • нейронная сеть, максимальное общее свойство объектов, степень совпадения, вычислительная сложность

    Предметные области Scopus

  • Математика (все)
  • Компьютерные науки (все)

ID: 126658310