Standard

Functions of normal operators under perturbations. / Александров, Алексей Борисович; Peller, V. V.; Potapov, D. S.; Sukochev, F. A.

в: Advances in Mathematics, Том 226, № 6, 01.04.2011, стр. 5216-5251.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Александров, АБ, Peller, VV, Potapov, DS & Sukochev, FA 2011, 'Functions of normal operators under perturbations', Advances in Mathematics, Том. 226, № 6, стр. 5216-5251. https://doi.org/10.1016/j.aim.2011.01.008

APA

Vancouver

Александров АБ, Peller VV, Potapov DS, Sukochev FA. Functions of normal operators under perturbations. Advances in Mathematics. 2011 Апр. 1;226(6):5216-5251. https://doi.org/10.1016/j.aim.2011.01.008

Author

Александров, Алексей Борисович ; Peller, V. V. ; Potapov, D. S. ; Sukochev, F. A. / Functions of normal operators under perturbations. в: Advances in Mathematics. 2011 ; Том 226, № 6. стр. 5216-5251.

BibTeX

@article{208c87d17e1f44db8cd9db84d1bf266e,
title = "Functions of normal operators under perturbations",
abstract = "In Peller (1980) [27], Peller (1985) [28], Aleksandrov and Peller (2009) [2], Aleksandrov and Peller (2010) [3], and Aleksandrov and Peller (2010) [4] sharp estimates for f(A)-f(B) were obtained for self-adjoint operators A and B and for various classes of functions f on the real line R. In this paper we extend those results to the case of functions of normal operators. We show that if a function f belongs to the H{\"o}lder class Λα(R2), 0<α<1, of functions of two variables, and N1 and N2 are normal operators, then {double pipe}f(N1){double pipe}f(N2){double pipe}≤const{double pipe}f{double pipe}Λα{double pipe}N1-N2{double pipe}α. We obtain a more general result for functions in the space Λω(R2)={f:|f(ζ1)-f(ζ2)|≤constω(|ζ1-ζ2|)} for an arbitrary modulus of continuity ω. We prove that if f belongs to the Besov class B∞11(R2), then it is operator Lipschitz, i.e., {double pipe}f(N1)-f(N2){double pipe}≤const{double pipe}f{double pipe}B∞11{double pipe}N1-N2{double pipe}. We also study properties of f(N1)-f(N2) in the case when f∈Λα(R2) and N1-N2 belongs to the Schatten-von Neumann class Sp.",
keywords = "Besov classes, Commutators, Double operator integrals, H{\"o}lder classes, Modulus of continuity, Normal operators, Operator Lipschitz functions, Perturbations, Schatten-von Neumann classes",
author = "Александров, {Алексей Борисович} and Peller, {V. V.} and Potapov, {D. S.} and Sukochev, {F. A.}",
note = "Funding Information: Keywords: Normal operators; Operator Lipschitz functions; H{\"o}lder classes; Besov classes; Schatten–von Neumann classes; Perturbations; Modulus of continuity; Double operator integrals; Commutators ✩ The first author is partially supported by RFBR grant 08-01-00358-a and by Russian Federation presidential grant NSh-2409.2008.1; the second author is partially supported by NSF grant DMS 1001844 and by ARC grant. * Corresponding author. E-mail address: peller@math.msu.edu (V.V. Peller).",
year = "2011",
month = apr,
day = "1",
doi = "10.1016/j.aim.2011.01.008",
language = "English",
volume = "226",
pages = "5216--5251",
journal = "Advances in Mathematics",
issn = "0001-8708",
publisher = "Elsevier",
number = "6",

}

RIS

TY - JOUR

T1 - Functions of normal operators under perturbations

AU - Александров, Алексей Борисович

AU - Peller, V. V.

AU - Potapov, D. S.

AU - Sukochev, F. A.

N1 - Funding Information: Keywords: Normal operators; Operator Lipschitz functions; Hölder classes; Besov classes; Schatten–von Neumann classes; Perturbations; Modulus of continuity; Double operator integrals; Commutators ✩ The first author is partially supported by RFBR grant 08-01-00358-a and by Russian Federation presidential grant NSh-2409.2008.1; the second author is partially supported by NSF grant DMS 1001844 and by ARC grant. * Corresponding author. E-mail address: peller@math.msu.edu (V.V. Peller).

PY - 2011/4/1

Y1 - 2011/4/1

N2 - In Peller (1980) [27], Peller (1985) [28], Aleksandrov and Peller (2009) [2], Aleksandrov and Peller (2010) [3], and Aleksandrov and Peller (2010) [4] sharp estimates for f(A)-f(B) were obtained for self-adjoint operators A and B and for various classes of functions f on the real line R. In this paper we extend those results to the case of functions of normal operators. We show that if a function f belongs to the Hölder class Λα(R2), 0<α<1, of functions of two variables, and N1 and N2 are normal operators, then {double pipe}f(N1){double pipe}f(N2){double pipe}≤const{double pipe}f{double pipe}Λα{double pipe}N1-N2{double pipe}α. We obtain a more general result for functions in the space Λω(R2)={f:|f(ζ1)-f(ζ2)|≤constω(|ζ1-ζ2|)} for an arbitrary modulus of continuity ω. We prove that if f belongs to the Besov class B∞11(R2), then it is operator Lipschitz, i.e., {double pipe}f(N1)-f(N2){double pipe}≤const{double pipe}f{double pipe}B∞11{double pipe}N1-N2{double pipe}. We also study properties of f(N1)-f(N2) in the case when f∈Λα(R2) and N1-N2 belongs to the Schatten-von Neumann class Sp.

AB - In Peller (1980) [27], Peller (1985) [28], Aleksandrov and Peller (2009) [2], Aleksandrov and Peller (2010) [3], and Aleksandrov and Peller (2010) [4] sharp estimates for f(A)-f(B) were obtained for self-adjoint operators A and B and for various classes of functions f on the real line R. In this paper we extend those results to the case of functions of normal operators. We show that if a function f belongs to the Hölder class Λα(R2), 0<α<1, of functions of two variables, and N1 and N2 are normal operators, then {double pipe}f(N1){double pipe}f(N2){double pipe}≤const{double pipe}f{double pipe}Λα{double pipe}N1-N2{double pipe}α. We obtain a more general result for functions in the space Λω(R2)={f:|f(ζ1)-f(ζ2)|≤constω(|ζ1-ζ2|)} for an arbitrary modulus of continuity ω. We prove that if f belongs to the Besov class B∞11(R2), then it is operator Lipschitz, i.e., {double pipe}f(N1)-f(N2){double pipe}≤const{double pipe}f{double pipe}B∞11{double pipe}N1-N2{double pipe}. We also study properties of f(N1)-f(N2) in the case when f∈Λα(R2) and N1-N2 belongs to the Schatten-von Neumann class Sp.

KW - Besov classes

KW - Commutators

KW - Double operator integrals

KW - Hölder classes

KW - Modulus of continuity

KW - Normal operators

KW - Operator Lipschitz functions

KW - Perturbations

KW - Schatten-von Neumann classes

UR - http://www.scopus.com/inward/record.url?scp=79952039943&partnerID=8YFLogxK

U2 - 10.1016/j.aim.2011.01.008

DO - 10.1016/j.aim.2011.01.008

M3 - Article

VL - 226

SP - 5216

EP - 5251

JO - Advances in Mathematics

JF - Advances in Mathematics

SN - 0001-8708

IS - 6

ER -

ID: 5209579