Standard

Functions of noncommuting operators under perturbation of class Sp. / Aleksandrov, A. B.; Peller, V. V.

в: Mathematische Nachrichten, Том 293, № 5, 01.05.2020, стр. 847-860.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Aleksandrov, A. B. ; Peller, V. V. / Functions of noncommuting operators under perturbation of class Sp. в: Mathematische Nachrichten. 2020 ; Том 293, № 5. стр. 847-860.

BibTeX

@article{ee5e530b11874999a9be9ce6aa18eba8,
title = "Functions of noncommuting operators under perturbation of class Sp",
abstract = "In this article we prove that for (Formula presented.), there exist pairs of self-adjoint operators (Formula presented.) and (Formula presented.) and a function f on the real line in the homogeneous Besov class (Formula presented.) such that the differences (Formula presented.) and (Formula presented.) belong to the Schatten–von Neumann class Sp but (Formula presented.). A similar result holds for functions of contractions. We also obtain an analog of this result in the case of triples of self-adjoint operators for any (Formula presented.).",
keywords = "46E35, 47A20, 47A55, 47A60, 47A63, Besov classes, contractions, double operator integrals, functions of noncommuting operators, Schatten–von Neumann classes, self-adjoint operators, triple operator integrals",
author = "Aleksandrov, {A. B.} and Peller, {V. V.}",
note = "Publisher Copyright: {\textcopyright} 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim",
year = "2020",
month = may,
day = "1",
doi = "10.1002/mana.201900074",
language = "English",
volume = "293",
pages = "847--860",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-Blackwell",
number = "5",

}

RIS

TY - JOUR

T1 - Functions of noncommuting operators under perturbation of class Sp

AU - Aleksandrov, A. B.

AU - Peller, V. V.

N1 - Publisher Copyright: © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

PY - 2020/5/1

Y1 - 2020/5/1

N2 - In this article we prove that for (Formula presented.), there exist pairs of self-adjoint operators (Formula presented.) and (Formula presented.) and a function f on the real line in the homogeneous Besov class (Formula presented.) such that the differences (Formula presented.) and (Formula presented.) belong to the Schatten–von Neumann class Sp but (Formula presented.). A similar result holds for functions of contractions. We also obtain an analog of this result in the case of triples of self-adjoint operators for any (Formula presented.).

AB - In this article we prove that for (Formula presented.), there exist pairs of self-adjoint operators (Formula presented.) and (Formula presented.) and a function f on the real line in the homogeneous Besov class (Formula presented.) such that the differences (Formula presented.) and (Formula presented.) belong to the Schatten–von Neumann class Sp but (Formula presented.). A similar result holds for functions of contractions. We also obtain an analog of this result in the case of triples of self-adjoint operators for any (Formula presented.).

KW - 46E35

KW - 47A20

KW - 47A55

KW - 47A60

KW - 47A63

KW - Besov classes

KW - contractions

KW - double operator integrals

KW - functions of noncommuting operators

KW - Schatten–von Neumann classes

KW - self-adjoint operators

KW - triple operator integrals

UR - http://www.scopus.com/inward/record.url?scp=85080067826&partnerID=8YFLogxK

U2 - 10.1002/mana.201900074

DO - 10.1002/mana.201900074

M3 - Article

VL - 293

SP - 847

EP - 860

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

IS - 5

ER -

ID: 78407240