DOI

In statistical classification and machine learning, as well as in social and other sciences, a number of measures of association have been proposed for assessing and comparing individual classifiers, raters, as well as their groups. In this paper, we introduce, justify, and explore several new measures of association, which we call CO-, ANTI-, and COANTI-correlation coefficients, that we demonstrate to be powerful tools for classifying confusion matrices. We illustrate the performance of these new coefficients using a number of examples, from which we also conclude that the coefficients are new objects in the sense that they differ from those already in the literature.
Язык оригиналаанглийский
Номер статьи2051013
ЖурналInternational Journal of Pattern Recognition and Artificial Intelligence
Том34
Номер выпуска13
Дата раннего онлайн-доступа21 апр 2020
DOI
СостояниеОпубликовано - 15 дек 2020

    Предметные области Scopus

  • Программный продукт
  • Компьютерное зрение и распознавание образов
  • Искусственный интеллект

    Области исследований

  • functional correlation, classifer, rater, confusion matrix, weighted kappa

ID: 69947173