Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › глава/раздел › научная › Рецензирование
From Chaos to Control: Leveraging Multi-Expert Strategies for Predictive Accuracy in Autonomous Systems. / Григорьев, Дмитрий Алексеевич; Мусаев, Андрей Александрович; Sokolov, Boris.
Mechatronics and Automation Technology. Том 64 IOS Press, 2025. стр. 479-486 (Advances in Transdisciplinary Engineering; Том 64).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › глава/раздел › научная › Рецензирование
}
TY - CHAP
T1 - From Chaos to Control: Leveraging Multi-Expert Strategies for Predictive Accuracy in Autonomous Systems
AU - Григорьев, Дмитрий Алексеевич
AU - Мусаев, Андрей Александрович
AU - Sokolov, Boris
PY - 2025
Y1 - 2025
N2 - This paper addresses the challenge of predicting chaotic behavior in automatic control systems and robotics, especially in unstable environments. Chaotic elements in observational data diminish the effectiveness of traditional statistical methods, necessitating novel predictive approaches. We propose a predictive framework based on a multi-expert data analysis model for control applications. Preliminary predictions are generated by software experts as weak classifiers, while a supervising expert consolidates these into a final decision. This approach resembles stacking algorithms used in ensemble decision-making. Our methodology enhances predictive accuracy in chaotic environments, leveraging the structural redundancy of multi-expert systems for improved robustness. Empirical results indicate that it strengthens decision-making in unpredictable scenarios, paving the way for future research on managing chaotic dynamics in automatic control and robotics.
AB - This paper addresses the challenge of predicting chaotic behavior in automatic control systems and robotics, especially in unstable environments. Chaotic elements in observational data diminish the effectiveness of traditional statistical methods, necessitating novel predictive approaches. We propose a predictive framework based on a multi-expert data analysis model for control applications. Preliminary predictions are generated by software experts as weak classifiers, while a supervising expert consolidates these into a final decision. This approach resembles stacking algorithms used in ensemble decision-making. Our methodology enhances predictive accuracy in chaotic environments, leveraging the structural redundancy of multi-expert systems for improved robustness. Empirical results indicate that it strengthens decision-making in unpredictable scenarios, paving the way for future research on managing chaotic dynamics in automatic control and robotics.
KW - Predicting
KW - automatic control systems
KW - chaotic processes
KW - instability
KW - multi-expert data analysis
KW - robotics
UR - https://www.mendeley.com/catalogue/da8412b8-2d74-37dd-8c48-a87b92e967a1/
U2 - 10.3233/ATDE241279
DO - 10.3233/ATDE241279
M3 - Chapter
SN - 9781643685649
VL - 64
T3 - Advances in Transdisciplinary Engineering
SP - 479
EP - 486
BT - Mechatronics and Automation Technology
PB - IOS Press
ER -
ID: 131228363