Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Frequency domain conditions for the existence of Bohr almost periodic solutions in evolution equations. / Reitmann, Volker.
3rd IFAC Workshop "Periodic Control Systems", PSYCO'2007 - Final Program and Abstracts. PART 1. ред. International Federation of Automatic Control, 2007. стр. 240-244 (IFAC Proceedings Volumes (IFAC-PapersOnline); Том 3, № PART 1).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Frequency domain conditions for the existence of Bohr almost periodic solutions in evolution equations
AU - Reitmann, Volker
N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2007
Y1 - 2007
N2 - We consider a control problem for the heating process of an elastic plate. The heat flux within the plate is modeled by the heat equation with nonlinear Neumann boundary conditions according to Newton's law. As input at a part of the boundary we take the nonlinearly transformed and modulated heat production of a separate heater which is given by a nonlinear Duffing-type ODE. This ODE depends on measurements of the temperature within the plate and on Bohr resp. Stepanov almost periodic in time forcing terms. The physical problem is generalized to a bifurcation problem for non-autonomous evolution systems in rigged Hilbert spaces. Using Lyapunov functionals, invariant cones and monotonicity properties of the nonlinearities in certain Sobolev spaces, we derive frequency domain conditions for the existence and uniqueness of an asymptotically stable and almost periodic in time temperature field.
AB - We consider a control problem for the heating process of an elastic plate. The heat flux within the plate is modeled by the heat equation with nonlinear Neumann boundary conditions according to Newton's law. As input at a part of the boundary we take the nonlinearly transformed and modulated heat production of a separate heater which is given by a nonlinear Duffing-type ODE. This ODE depends on measurements of the temperature within the plate and on Bohr resp. Stepanov almost periodic in time forcing terms. The physical problem is generalized to a bifurcation problem for non-autonomous evolution systems in rigged Hilbert spaces. Using Lyapunov functionals, invariant cones and monotonicity properties of the nonlinearities in certain Sobolev spaces, we derive frequency domain conditions for the existence and uniqueness of an asymptotically stable and almost periodic in time temperature field.
KW - Control closed-loop
KW - Frequency domains
KW - Partial differential equations
KW - Periodic motion
KW - Stability analysis
UR - http://www.scopus.com/inward/record.url?scp=79960986408&partnerID=8YFLogxK
U2 - 10.3182/20070829-3-ru-4912.00041
DO - 10.3182/20070829-3-ru-4912.00041
M3 - Conference contribution
AN - SCOPUS:79960986408
SN - 9783902661302
T3 - IFAC Proceedings Volumes (IFAC-PapersOnline)
SP - 240
EP - 244
BT - 3rd IFAC Workshop "Periodic Control Systems", PSYCO'2007 - Final Program and Abstracts
PB - International Federation of Automatic Control
ER -
ID: 73407056