Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Free boundary problem of magnetohydrodynamics. / Frolova, E. V. .
в: Journal of Mathematical Sciences, Том 210, № 6, 2015, стр. 857-877.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Free boundary problem of magnetohydrodynamics
AU - Frolova, E. V.
N1 - Frolova, E.V. Free Boundary Problem of Magnetohydrodynamics. J Math Sci 210, 857–877 (2015). https://doi.org/10.1007/s10958-015-2596-x
PY - 2015
Y1 - 2015
N2 - A free boundary problem controlling the motion of a finite isolated mass of a viscous incompressible electrically conducting fluid in vacuum is considered. The fluid is moving under the action of a magnetic field and volume forces. It is proved that this free boundary problem is solvable in an infinite time interval under additional smallness assumptions imposed on the initial data and the external forces.
AB - A free boundary problem controlling the motion of a finite isolated mass of a viscous incompressible electrically conducting fluid in vacuum is considered. The fluid is moving under the action of a magnetic field and volume forces. It is proved that this free boundary problem is solvable in an infinite time interval under additional smallness assumptions imposed on the initial data and the external forces.
KW - Initial Data
KW - Free boundary problems
KW - Compatibility Condition
KW - Linear Problem
KW - Free Boundary Problem
UR - https://link.springer.com/article/10.1007/s10958-015-2596-x
M3 - Article
VL - 210
SP - 857
EP - 877
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 15925933