We prove the spectral mapping theorem $\sigma_e(A_\phi) = \phi(\sigma_e(A_z))$ for the Fredholm spectrum of a truncated Toeplitz operator $A_\phi$ with symbol $\phi$ in the Sarason algebra $C+H^\infty$ acting on a coinvariant subspace $K_\theta$ of the Hardy space $H^2$. Our second result says that a truncated Hankel operator on the subspace $K_\theta$ generated by a one-component inner function $\theta$ is compact if and only if it has a continuous symbol. We also suppose a description of truncated Toeplitz and Hankel operators in Schatten classes $S^p$.
Язык оригиналаанглийский
Страницы (с-по)1-17
ЖурналIntegral Equations and Operator Theory
DOI
СостояниеОпубликовано - 2014

ID: 5758018