Standard

Fractional Laplacian in V-shaped waveguide. / Бахарев, Федор Львович; Матвеенко, Сергей Георгиевич.

в: Mathematische Nachrichten, 14.11.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Бахарев, Ф. Л., & Матвеенко, С. Г. (2024). Fractional Laplacian in V-shaped waveguide. Mathematische Nachrichten. https://doi.org/10.1002/mana.202400271

Vancouver

Бахарев ФЛ, Матвеенко СГ. Fractional Laplacian in V-shaped waveguide. Mathematische Nachrichten. 2024 Нояб. 14. https://doi.org/10.1002/mana.202400271

Author

Бахарев, Федор Львович ; Матвеенко, Сергей Георгиевич. / Fractional Laplacian in V-shaped waveguide. в: Mathematische Nachrichten. 2024.

BibTeX

@article{4c03697bc67f420da3d94935484c55b3,
title = "Fractional Laplacian in V-shaped waveguide",
abstract = "The spectral properties of the restricted fractional Dirichlet Laplacian in V-shaped waveguides are studied. The continuous spectrum for such domains with cylindrical outlets is known to occupy the ray (Formula presented.) with the threshold corresponding to the smallest eigenvalue of the cross-sectional problems. In this work, the presence of a discrete spectrum at any junction angle is established along with the monotonic dependence of the discrete spectrum on the angle.",
keywords = "Dirichlet spectrum, restricted fractional Laplacian, waveguide",
author = "Бахарев, {Федор Львович} and Матвеенко, {Сергей Георгиевич}",
year = "2024",
month = nov,
day = "14",
doi = "10.1002/mana.202400271",
language = "English",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - Fractional Laplacian in V-shaped waveguide

AU - Бахарев, Федор Львович

AU - Матвеенко, Сергей Георгиевич

PY - 2024/11/14

Y1 - 2024/11/14

N2 - The spectral properties of the restricted fractional Dirichlet Laplacian in V-shaped waveguides are studied. The continuous spectrum for such domains with cylindrical outlets is known to occupy the ray (Formula presented.) with the threshold corresponding to the smallest eigenvalue of the cross-sectional problems. In this work, the presence of a discrete spectrum at any junction angle is established along with the monotonic dependence of the discrete spectrum on the angle.

AB - The spectral properties of the restricted fractional Dirichlet Laplacian in V-shaped waveguides are studied. The continuous spectrum for such domains with cylindrical outlets is known to occupy the ray (Formula presented.) with the threshold corresponding to the smallest eigenvalue of the cross-sectional problems. In this work, the presence of a discrete spectrum at any junction angle is established along with the monotonic dependence of the discrete spectrum on the angle.

KW - Dirichlet spectrum

KW - restricted fractional Laplacian

KW - waveguide

UR - https://www.mendeley.com/catalogue/4d296cab-e61a-3ee4-8c86-1163492e2cc5/

U2 - 10.1002/mana.202400271

DO - 10.1002/mana.202400271

M3 - Article

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

ER -

ID: 127635570