Standard

Fractional integration of summable functions: Maz'ya's Φ-inequalities. / Stolyarov, D.

в: Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Том 25, № 3, 07.03.2023, стр. 1727-1752.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Stolyarov, D 2023, 'Fractional integration of summable functions: Maz'ya's Φ-inequalities', Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Том. 25, № 3, стр. 1727-1752. https://doi.org/10.2422/2036-2145.202110_001

APA

Stolyarov, D. (2023). Fractional integration of summable functions: Maz'ya's Φ-inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 25(3), 1727-1752. https://doi.org/10.2422/2036-2145.202110_001

Vancouver

Stolyarov D. Fractional integration of summable functions: Maz'ya's Φ-inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 2023 Март 7;25(3):1727-1752. https://doi.org/10.2422/2036-2145.202110_001

Author

Stolyarov, D. / Fractional integration of summable functions: Maz'ya's Φ-inequalities. в: Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 2023 ; Том 25, № 3. стр. 1727-1752.

BibTeX

@article{8864df6deecf4c08b9732f1a33a9c8ad,
title = "Fractional integration of summable functions: Maz'ya's Φ-inequalities",
abstract = "We study inequalities of the type j R Rd Φ(K*f )| ≲ ∥f ∥p L1(Rd ) , where the kernel K is homogeneous of order α - d and possibly vector-valued, the function Φ is positively p-homogeneous, and p = d/(d - α). Under mild regularity assumptions on K and Φ, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions f . {\textcopyright} 2024 Scuola Normale Superiore. All rights reserved.",
author = "D. Stolyarov",
note = "Export Date: 27 October 2024 Сведения о финансировании: Russian Science Foundation, RSF, N 19-71-10023 Текст о финансировании 1: Supported by the Russian Science Foundation grant N 19-71-10023. Received September 27, 2021; accepted in revised form January 23, 2023. Published online September 2024.",
year = "2023",
month = mar,
day = "7",
doi = "10.2422/2036-2145.202110_001",
language = "Английский",
volume = "25",
pages = "1727--1752",
journal = "Annali della Scuola normale superiore di Pisa - Classe di scienze",
issn = "0391-173X",
publisher = "Scuola Normale Superiore",
number = "3",

}

RIS

TY - JOUR

T1 - Fractional integration of summable functions: Maz'ya's Φ-inequalities

AU - Stolyarov, D.

N1 - Export Date: 27 October 2024 Сведения о финансировании: Russian Science Foundation, RSF, N 19-71-10023 Текст о финансировании 1: Supported by the Russian Science Foundation grant N 19-71-10023. Received September 27, 2021; accepted in revised form January 23, 2023. Published online September 2024.

PY - 2023/3/7

Y1 - 2023/3/7

N2 - We study inequalities of the type j R Rd Φ(K*f )| ≲ ∥f ∥p L1(Rd ) , where the kernel K is homogeneous of order α - d and possibly vector-valued, the function Φ is positively p-homogeneous, and p = d/(d - α). Under mild regularity assumptions on K and Φ, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions f . © 2024 Scuola Normale Superiore. All rights reserved.

AB - We study inequalities of the type j R Rd Φ(K*f )| ≲ ∥f ∥p L1(Rd ) , where the kernel K is homogeneous of order α - d and possibly vector-valued, the function Φ is positively p-homogeneous, and p = d/(d - α). Under mild regularity assumptions on K and Φ, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions f . © 2024 Scuola Normale Superiore. All rights reserved.

UR - https://www.mendeley.com/catalogue/341064c7-b39b-3e15-aba9-089adf94fa23/

U2 - 10.2422/2036-2145.202110_001

DO - 10.2422/2036-2145.202110_001

M3 - статья

VL - 25

SP - 1727

EP - 1752

JO - Annali della Scuola normale superiore di Pisa - Classe di scienze

JF - Annali della Scuola normale superiore di Pisa - Classe di scienze

SN - 0391-173X

IS - 3

ER -

ID: 126462500