Standard

Formal Modules for Relative Formal Lubin–Tate Groups. / Madunts, A. I.

в: Journal of Mathematical Sciences (United States), Том 232, № 5, 01.08.2018, стр. 704-716.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Madunts, AI 2018, 'Formal Modules for Relative Formal Lubin–Tate Groups', Journal of Mathematical Sciences (United States), Том. 232, № 5, стр. 704-716. https://doi.org/10.1007/s10958-018-3899-5

APA

Madunts, A. I. (2018). Formal Modules for Relative Formal Lubin–Tate Groups. Journal of Mathematical Sciences (United States), 232(5), 704-716. https://doi.org/10.1007/s10958-018-3899-5

Vancouver

Madunts AI. Formal Modules for Relative Formal Lubin–Tate Groups. Journal of Mathematical Sciences (United States). 2018 Авг. 1;232(5):704-716. https://doi.org/10.1007/s10958-018-3899-5

Author

Madunts, A. I. / Formal Modules for Relative Formal Lubin–Tate Groups. в: Journal of Mathematical Sciences (United States). 2018 ; Том 232, № 5. стр. 704-716.

BibTeX

@article{47d3881d68b146bf82d4fa09dd234d99,
title = "Formal Modules for Relative Formal Lubin–Tate Groups",
abstract = "Relative formal Lubin–Tate groups are studied, namely, their structure, the ring of endomorphisms, and the group of points. The primary elements are considered, and an explicit formula for the generalized Hilbert symbol is derived.",
author = "Madunts, {A. I.}",
year = "2018",
month = aug,
day = "1",
doi = "10.1007/s10958-018-3899-5",
language = "English",
volume = "232",
pages = "704--716",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Formal Modules for Relative Formal Lubin–Tate Groups

AU - Madunts, A. I.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Relative formal Lubin–Tate groups are studied, namely, their structure, the ring of endomorphisms, and the group of points. The primary elements are considered, and an explicit formula for the generalized Hilbert symbol is derived.

AB - Relative formal Lubin–Tate groups are studied, namely, their structure, the ring of endomorphisms, and the group of points. The primary elements are considered, and an explicit formula for the generalized Hilbert symbol is derived.

UR - http://www.scopus.com/inward/record.url?scp=85048509434&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-3899-5

DO - 10.1007/s10958-018-3899-5

M3 - Article

AN - SCOPUS:85048509434

VL - 232

SP - 704

EP - 716

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 33264991