DOI

We propose a free field representation for the form factors of descendant operators in the Bullough-Dodd model. This construction is a particular modification of Lukyanov's technique for solving the form factors axioms. We prove that the number of proposed solutions in each level subspace of the chiral sectors coincide with the number of the corresponding descendant operators in the Lagrangian formalism. We check that these form factors possess the cluster factorization property. Besides, we propose an alternative free field representation which allows us to study analytic properties of the form factors effectively. In particular, we prove that the form factors satisfy non trivial identities known as the "reflection relations". We show the existence of the reflection invariant basis in the level subspaces for a generic values of the parameters.

Язык оригиналаанглийский
Номер статьи112
ЖурналJournal of High Energy Physics
Том2013
Номер выпуска7
DOI
СостояниеОпубликовано - 19 авг 2013

    Предметные области Scopus

  • Ядерная физика и физика высоких энергий

ID: 36351960