Standard

Foam-like Ce–Fe–O-based nanocomposites as catalytic platforms for efficient hydrogen oxidation in air. / Cam, T.S.; Omarov, S.; Trofimuk, A.; Lebedev, V.; Panchuk, V.; Semenov, V.; Nguyen, A.T.; Popkov, V.

в: Journal of Science-Advanced Materials and Devices, Том 8, № 3, 100596, 01.09.2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Cam, T.S. ; Omarov, S. ; Trofimuk, A. ; Lebedev, V. ; Panchuk, V. ; Semenov, V. ; Nguyen, A.T. ; Popkov, V. / Foam-like Ce–Fe–O-based nanocomposites as catalytic platforms for efficient hydrogen oxidation in air. в: Journal of Science-Advanced Materials and Devices. 2023 ; Том 8, № 3.

BibTeX

@article{eeda16f631d4406da86262d20dfc7a68,
title = "Foam-like Ce–Fe–O-based nanocomposites as catalytic platforms for efficient hydrogen oxidation in air",
abstract = "Foam-like nanocomposites of the Ce–Fe–O system with two (c-CeO2, am-F2O3), three (c-CeO2, o-CeFeO3, α-F2O3), or four phases (c-CeO2, o-CeFeO3, α-F2O3, am-Fe2O3) were synthesized using the RedOx reaction of glycine-nitrate combustion. The glycine/nitrate ratio (G/N) varied from deficient (0.2, 0.4) and stoichiometric (0.6) to excess ratios of glycine (0.8, 1.0, 1.2, 1.4). PXRD, 57Fe M{\"o}ssbauer spectroscopy, N2-physisorption, TEM, H2-TPD, O2-TPD, and H2-TPR were used to examine the characteristics of the obtained samples. The average crystallite size of the obtained composites was in the range of 1.3–31.3 nm, 33.4–50.7 nm, and 10.1–33.9 nm for c-CeO2, o-CeFeO3, and α-Fe2O3, respectively. The lowest SBET (1.5 m2/g) belonged to the case of stoichiometric G/N, while the highest value (49.2 m2/g) was found in the case of the highest amount of glycine (G/N = 1.4); the latter case also had the largest total pore volume (Vp = 0.182 cm3/g) when compared to the others. Moreover, the advanced catalytic performance of foamy Ce–Fe–O-based nanocomposites toward H2 combustion in air was found with t10 = 275 °C, t50 = 345 °C, and Ea = 76.9 kJ/mol for sample G/N = 1.2. The higher activity of sample G/N = 1.2 in catalysis was attributed to different properties of the composite, including an appropriate component phase ratio, the smaller size of crystallites, higher specific surface area, higher reducibility,oxygen capacity, etc. The findings make it possible to carry out the directed synthesis of catalysts based on the Ce–Fe–O system with specific phases, dispersion, and morphological composition for efficient hydrogen oxidation at moderate temperatures. {\textcopyright} 2023 Vietnam National University, Hanoi",
keywords = "CeO2–Fe2O3, Cerium orthoferrite, Glycine-nitrate condition, Hydrogen catalytic oxidation, Perovskite, Solution combustion synthesis",
author = "T.S. Cam and S. Omarov and A. Trofimuk and V. Lebedev and V. Panchuk and V. Semenov and A.T. Nguyen and V. Popkov",
note = "Export Date: 28 November 2023 Адрес для корреспонденции: Cam, T.S.; Institute of Fundamental and Applied Sciences (Ho Chi Minh City 700000), Viet Nam; эл. почта: camthanhson@duytan.edu.vn Текст о финансировании 1: The authors are grateful to E.A. Zaboeva for her assistance in carrying out the synthesis of Ce–Fe–O-based nanopowders using the glycine-nitrate combustion method. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Пристатейные ссылки: Shepelin, V., Koshmanov, D., Chepelin, E., Catalysts for hydrogen removal: kinetic paradox and functioning at high concentration of hydrogen (2009) Int. Conf. Hydrog. Saf., pp. 1-12; Leppard, C.J., Holt, A., Process for the removal of hydrogen from Gases (1983), EP 0 089 183 A2); Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W., He, G., A review of hydrogen purification technologies for fuel cell vehicles (2021) Catalysts, 11, p. 393; Depken, J., Dyck, A., Ro{\ss}, L., Ehlers, S., Safety considerations of hydrogen application in shipping in comparison to LNG (2022) Energies, 15, p. 3250; L'vov, B.V., Galwey, A.K., Catalytic oxidation of hydrogen on platinum (2013) J. Therm. Anal. Calorim., 112, pp. 815-822; Golden, T.C., Hufton, J.R., Kalbassi, M.A., Lau, G.C., Waweru, C., Raiswell, C.J., Suggitt, C., Zwilling, D.P., Removal of hydrogen and Carbon monoxide impurities from Gas streams using a Copper and manganese based Catalyst (2014), EP 2 789 376 A1; Matveyeva, A.N., Omarov, S.O., Gavrilova, M.A., Sladkovskiy, D.A., Murzin, D.Y., CeFeO3-CeO2-Fe2O3 systems: synthesis by solution combustion method and catalytic performance in CO2 hydrogenation (2022) Materials, 15, p. 7970; Cam, T.S., Omarov, S.O., Chebanenko, M.I., Izotova, S.G., Popkov, V.I., Recent progress in the synthesis of CeO2-based nanocatalysts towards efficient oxidation of CO (2022) J. Sci. Adv. Mater. Devices., 7; Cam, T.S., Omarov, S.O., Chebanenko, M.I., Sklyarova, A.S., Nevedomskiy, V.N., Popkov, V.I., One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: the effect of CuO loading (2021) J. Environ. Chem. Eng., 9; Tien Thao, N., Son, L.T., Production of cobalt-copper from partial reduction of La(Co,Cu)O3 perovskites for CO hydrogenation (2016) J. Sci. Adv. Mater. Devices., 1, pp. 337-342; Pinheiro, A., Oliveira, A., de Sousa, F., Soares, J., Saraiva, G., Oliveira, A., Lang, R., CeFe-based bead nanocomposites as catalysts for oxidation of ethylbenzene reaction (2018) Catalysts, 8, p. 495; Zeng, Z., Xu, Y., Zhang, Z., Gao, Z., Luo, M., Yin, Z., Zhang, C., Yan, C., Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications (2020) Chem. Soc. Rev., 49, pp. 1109-1143; Saputra, E., Utama, P.S., Hs, I., Simatupang, M.D.V., Prawiranegara, B.A., Abid, H.R., Muraza, O., Spent bleaching earth supported CeFeO3 perovskite for visible light photocatalytic oxidation of methylene blue (2020) J. Appl. Mater. Technol., 1, pp. 81-87; Choong, C.E., Park, C.M., Chang, Y.-Y., Yang, J., Kim, J.R., Oh, S.-E., Jeon, B.-H., Jang, M., Interfacial coupling perovskite CeFeO3 on layered graphitic carbon nitride as a multifunctional Z-scheme photocatalyst for boosting nitrogen fixation and organic pollutants demineralization (2022) Chem. Eng. J., 427; Tang, P., Zhang, J., Fu, M., Cao, F., Lv, C., Characterization and preparation nanosized CeFeO3 by a microwave process (2013) Integrated Ferroelectrics Int. J., 146, pp. 99-104; Ni, D., Yang, Q., Li, J., Ying, J., Tang, C., Tang, P., Preparation of Ni-doped CeFeO3 by microwave process and its visible-light photocatalytic activity (2016) J. Nanosci. Nanotechnol., 16, pp. 1046-1049; Ameta, J., Kumar, A., Ameta, R., Sharma, V.K., Ameta, S.C., Synthesis and characterization of CeFeO3 photocatalyst used in photocatalytic bleaching of gentian violet (2009) J. Iran. Chem. Soc., 6, pp. 293-299; Hou, L., Shi, L., Zhao, J., Zhou, S., Pan, S., Yuan, X., Xin, Y., Room-temperature multiferroicity in CeFeO3 ceramics (2019) J. Alloys Compd., 797, pp. 363-369; Yuan, S.J., Cao, Y.M., Li, L., Qi, T.F., Cao, S.X., Zhang, J.C., DeLong, L.E., Cao, G., First-order spin reorientation transition and specific-heat anomaly in CeFeO3 (2013) J. Appl. Phys., 114; Robbins, M., Wertheim, G.K., Menth, A., Sherwood, R.C., Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3) (1969) J. Phys. Chem. Solid., 30, pp. 1823-1825; Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V., Solution combustion synthesis of nanoscale materials (2016) Chem. Rev., 116, pp. 14493-14586; Petschnig, L.L., Fuhrmann, G., Schildhammer, D., Tribus, M., Schottenberger, H., Huppertz, H., Solution combustion synthesis of CeFeO3 under ambient atmosphere (2016) Ceram. Int., 42, pp. 4262-4267; Zvereva, V.V., Popkov, V.I., Synthesis of CeO2-Fe2O3 nanocomposites via controllable oxidation of CeFeO3 nanocrystals (2019) Ceram. Int., 45, pp. 12516-12520; Zaboeva, E.A., Izotova, S.G., Popkov, V.I., Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders (2016) Russ. J. Appl. Chem., 89, pp. 1228-1236; Martinson, K.D., Kondrashkova, I.S., Popkov, V.I., Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method (2017) Russ. J. Appl. Chem., 90, pp. 1214-1218; Martinson, K.D., Kondrashkova, I.S., Chebanenko, M.I., Kiselev, A.S., Kiseleva, T.Y., Popkov, V.I., Morphology, structure and magnetic behavior of orthorhombic and hexagonal HoFeO3 synthesized via solution combustion approach (2022) J. Rare Earths, 40, pp. 296-301; Tomul, F., Arslan, Y., Kabak, B., Trak, D., Kend{\"u}zler, E., Lima, E.C., Tran, H.N., Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water (2020) Sci. Total Environ., 726; Scott, C.D., Kinetics of the Catalyzed oxidation of hydrogen, Carbon monoxide, and methane by oxygen in a flowing stream of helium (1961), Oak Ridge Natl. Lab; Bonnelle, J.P., Delmon, B., Derouane, E., Surface Properties and Catalysis by Non-Metals (1983), Springer Netherlands Dordrecht; Sourirajan, S., Accomazzo, M.A., Catalytic oxidation of carbon monoxide present in low concentrations (1960) Can. J. Chem., 38, pp. 1990-1998; Matveyeva, A.N., W{\"a}rn{\aa}, J., Pakhomov, N.A., Murzin, D.Y., Kinetic modeling of isobutane dehydrogenation over Ga2O3/Al2O3 catalyst (2020) Chem. Eng. J., 381; Cam, T.S., Vishnevskaya, T.A., Omarov, S.O., Nevedomskiy, V.N., Popkov, V.I., Urea-nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio (2020) J. Mater. Sci., 55, pp. 11891-11906; Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure Appl. Chem., 87, pp. 1051-1069; Li, J., Wang, Z., Yang, X., Hu, L., Liu, Y., Wang, C., Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR (2007) J. Anal. Appl. Pyrolysis, 80, pp. 247-253; Gu, Z., Li, K., Qing, S., Zhu, X., Wei, Y., Li, Y., Wang, H., Enhanced reducibility and redox stability of Fe2O3 in the presence of CeO2 nanoparticles (2014) RSC Adv., 4, pp. 47191-47199; Li, K., Haneda, M., Gu, Z., Wang, H., Ozawa, M., Modification of CeO2 on the redox property of Fe2O3 (2013) Mater. Lett., 93, pp. 129-132; Zhang, W., Shi, X., Gao, M., Liu, J., Lv, Z., Wang, Y., Huo, Y., He, H., Iron-based composite oxide catalysts tuned by CTAB exhibit superior NH3-SCR performance (2021) Catalysts, 11, p. 224; Ning, W., Li, B., Wang, B., Yang, X., Jin, Y., Enhanced production of C5+ hydrocarbons from CO2 hydrogenation by the synergistic effects of Pd and K on γ-Fe2O3 catalyst (2019) Catal. Lett., 149, pp. 431-440; Matz, O., Calatayud, M., Breaking H2 with CeO2: effect of surface termination (2018) ACS Omega, 3, pp. 16063-16073; Omarov, S.O., Martinson, K.D., Matveyeva, A.N., Chebanenko, M.I., Nevedomskiy, V.N., Popkov, V.I., Renewable hydrogen production via glycerol steam reforming over Ni/CeO2 catalysts obtained by solution combustion method: the effect of Ni loading (2022) Fuel Process. Technol., 236; He, J., Zhang, H., Wang, W., Yao, P., Jiao, Y., Wang, J., Chen, Y., Soot combustion over CeO2 catalyst: the influence of biodiesel impurities (Na, K, Ca, P) on surface chemical properties (2021) Environ. Sci. Pollut. Res., 28, pp. 26018-26029; D{\'e}saunay, T., Bonura, G., Chiodo, V., Freni, S., Couzini{\'e}, J.-P., Bourgon, J., Ringued{\'e}, A., Cassir, M., Surface-dependent oxidation of H2 on CeO2 surfaces (2013) J. Catal., 297, pp. 193-201; Xiao, P., Zhong, L., Zhu, J., Hong, J., Li, J., Li, H., Zhu, Y., CO and soot oxidation over macroporous perovskite LaFeO3 (2015) Catal. Today, 258, pp. 660-667; Liao, X., Zhang, Y., Guo, J., Zhao, L., Hill, M., Jiang, Z., Zhao, Y., The catalytic hydrogenation of maleic anhydride on CeO2−δ-supported transition metal catalysts (2017) Catalysts, 7, p. 272; Mullins, D.R., Albrecht, P.M., Calaza, F., Variations in reactivity on different crystallographic orientations of cerium oxide (2013) Top. Catal., 56, pp. 1345-1362; Manto, M.J., Xie, P., Wang, C., Catalytic dephosphorylation using ceria nanocrystals (2017) ACS Catal., 7, pp. 1931-1938; Machida, M., Kawada, T., Fujii, H., Hinokuma, S., The role of CeO2 as a gateway for oxygen storage over CeO2-grafted Fe2O3 composite materials (2015) J. Phys. Chem. C, 119, pp. 24932-24941; Kucharczyk, B., Adamska, K., Tylus, W., Mi{\'s}ta, W., Szczygie{\l}, B., Winiarski, J., Effect of silver addition to LaFeO3 perovskite on the activity of monolithic La1−xAgxFeO3 perovskite catalysts in methane hexane oxidation (2019) Catal. Lett., 149, pp. 1919-1933; Shinde, V.M., Madras, G., Kinetic studies of ionic substituted copper catalysts for catalytic hydrogen combustion (2012) Catal. Today, 198, pp. 270-279; Shinde, V.M., Madras, G., Nanostructured Pd modified Ni/CeO2 catalyst for water gas shift and catalytic hydrogen combustion reaction (2013) Appl. Catal. B Environ., 132-133, pp. 28-38; Liu, X., Liu, J., Chang, Z., Sun, X., Li, Y., Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation (2011) Catal. Commun., 12, pp. 530-534; Bao, H., Chen, X., Fang, J., Jiang, Z., Huang, W., Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation (2008) Catal. Lett., 125, pp. 160-167; Yang, Q., Li, J., Wang, D., Peng, Y., Ma, Y., Activity improvement of acid treatment on LaFeO3 catalyst for CO oxidation (2021) Catal. Today, 376, pp. 205-210; Buciuman, F.-C., Patcas, F., Menezo, J.-C., Barbier, J., Hahn, T., Lintz, H.-G., Catalytic properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) perovskites: 1. Oxidation of hydrogen and propene (2002) Appl. Catal. B Environ., 35, pp. 175-183",
year = "2023",
month = sep,
day = "1",
doi = "10.1016/j.jsamd.2023.100596",
language = "Английский",
volume = "8",
journal = "Journal of Science-Advanced Materials and Devices",
issn = "2468-2284",
publisher = "Elsevier",
number = "3",

}

RIS

TY - JOUR

T1 - Foam-like Ce–Fe–O-based nanocomposites as catalytic platforms for efficient hydrogen oxidation in air

AU - Cam, T.S.

AU - Omarov, S.

AU - Trofimuk, A.

AU - Lebedev, V.

AU - Panchuk, V.

AU - Semenov, V.

AU - Nguyen, A.T.

AU - Popkov, V.

N1 - Export Date: 28 November 2023 Адрес для корреспонденции: Cam, T.S.; Institute of Fundamental and Applied Sciences (Ho Chi Minh City 700000), Viet Nam; эл. почта: camthanhson@duytan.edu.vn Текст о финансировании 1: The authors are grateful to E.A. Zaboeva for her assistance in carrying out the synthesis of Ce–Fe–O-based nanopowders using the glycine-nitrate combustion method. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Пристатейные ссылки: Shepelin, V., Koshmanov, D., Chepelin, E., Catalysts for hydrogen removal: kinetic paradox and functioning at high concentration of hydrogen (2009) Int. Conf. Hydrog. Saf., pp. 1-12; Leppard, C.J., Holt, A., Process for the removal of hydrogen from Gases (1983), EP 0 089 183 A2); Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W., He, G., A review of hydrogen purification technologies for fuel cell vehicles (2021) Catalysts, 11, p. 393; Depken, J., Dyck, A., Roß, L., Ehlers, S., Safety considerations of hydrogen application in shipping in comparison to LNG (2022) Energies, 15, p. 3250; L'vov, B.V., Galwey, A.K., Catalytic oxidation of hydrogen on platinum (2013) J. Therm. Anal. Calorim., 112, pp. 815-822; Golden, T.C., Hufton, J.R., Kalbassi, M.A., Lau, G.C., Waweru, C., Raiswell, C.J., Suggitt, C., Zwilling, D.P., Removal of hydrogen and Carbon monoxide impurities from Gas streams using a Copper and manganese based Catalyst (2014), EP 2 789 376 A1; Matveyeva, A.N., Omarov, S.O., Gavrilova, M.A., Sladkovskiy, D.A., Murzin, D.Y., CeFeO3-CeO2-Fe2O3 systems: synthesis by solution combustion method and catalytic performance in CO2 hydrogenation (2022) Materials, 15, p. 7970; Cam, T.S., Omarov, S.O., Chebanenko, M.I., Izotova, S.G., Popkov, V.I., Recent progress in the synthesis of CeO2-based nanocatalysts towards efficient oxidation of CO (2022) J. Sci. Adv. Mater. Devices., 7; Cam, T.S., Omarov, S.O., Chebanenko, M.I., Sklyarova, A.S., Nevedomskiy, V.N., Popkov, V.I., One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: the effect of CuO loading (2021) J. Environ. Chem. Eng., 9; Tien Thao, N., Son, L.T., Production of cobalt-copper from partial reduction of La(Co,Cu)O3 perovskites for CO hydrogenation (2016) J. Sci. Adv. Mater. Devices., 1, pp. 337-342; Pinheiro, A., Oliveira, A., de Sousa, F., Soares, J., Saraiva, G., Oliveira, A., Lang, R., CeFe-based bead nanocomposites as catalysts for oxidation of ethylbenzene reaction (2018) Catalysts, 8, p. 495; Zeng, Z., Xu, Y., Zhang, Z., Gao, Z., Luo, M., Yin, Z., Zhang, C., Yan, C., Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications (2020) Chem. Soc. Rev., 49, pp. 1109-1143; Saputra, E., Utama, P.S., Hs, I., Simatupang, M.D.V., Prawiranegara, B.A., Abid, H.R., Muraza, O., Spent bleaching earth supported CeFeO3 perovskite for visible light photocatalytic oxidation of methylene blue (2020) J. Appl. Mater. Technol., 1, pp. 81-87; Choong, C.E., Park, C.M., Chang, Y.-Y., Yang, J., Kim, J.R., Oh, S.-E., Jeon, B.-H., Jang, M., Interfacial coupling perovskite CeFeO3 on layered graphitic carbon nitride as a multifunctional Z-scheme photocatalyst for boosting nitrogen fixation and organic pollutants demineralization (2022) Chem. Eng. J., 427; Tang, P., Zhang, J., Fu, M., Cao, F., Lv, C., Characterization and preparation nanosized CeFeO3 by a microwave process (2013) Integrated Ferroelectrics Int. J., 146, pp. 99-104; Ni, D., Yang, Q., Li, J., Ying, J., Tang, C., Tang, P., Preparation of Ni-doped CeFeO3 by microwave process and its visible-light photocatalytic activity (2016) J. Nanosci. Nanotechnol., 16, pp. 1046-1049; Ameta, J., Kumar, A., Ameta, R., Sharma, V.K., Ameta, S.C., Synthesis and characterization of CeFeO3 photocatalyst used in photocatalytic bleaching of gentian violet (2009) J. Iran. Chem. Soc., 6, pp. 293-299; Hou, L., Shi, L., Zhao, J., Zhou, S., Pan, S., Yuan, X., Xin, Y., Room-temperature multiferroicity in CeFeO3 ceramics (2019) J. Alloys Compd., 797, pp. 363-369; Yuan, S.J., Cao, Y.M., Li, L., Qi, T.F., Cao, S.X., Zhang, J.C., DeLong, L.E., Cao, G., First-order spin reorientation transition and specific-heat anomaly in CeFeO3 (2013) J. Appl. Phys., 114; Robbins, M., Wertheim, G.K., Menth, A., Sherwood, R.C., Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3) (1969) J. Phys. Chem. Solid., 30, pp. 1823-1825; Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V., Solution combustion synthesis of nanoscale materials (2016) Chem. Rev., 116, pp. 14493-14586; Petschnig, L.L., Fuhrmann, G., Schildhammer, D., Tribus, M., Schottenberger, H., Huppertz, H., Solution combustion synthesis of CeFeO3 under ambient atmosphere (2016) Ceram. Int., 42, pp. 4262-4267; Zvereva, V.V., Popkov, V.I., Synthesis of CeO2-Fe2O3 nanocomposites via controllable oxidation of CeFeO3 nanocrystals (2019) Ceram. Int., 45, pp. 12516-12520; Zaboeva, E.A., Izotova, S.G., Popkov, V.I., Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders (2016) Russ. J. Appl. Chem., 89, pp. 1228-1236; Martinson, K.D., Kondrashkova, I.S., Popkov, V.I., Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method (2017) Russ. J. Appl. Chem., 90, pp. 1214-1218; Martinson, K.D., Kondrashkova, I.S., Chebanenko, M.I., Kiselev, A.S., Kiseleva, T.Y., Popkov, V.I., Morphology, structure and magnetic behavior of orthorhombic and hexagonal HoFeO3 synthesized via solution combustion approach (2022) J. Rare Earths, 40, pp. 296-301; Tomul, F., Arslan, Y., Kabak, B., Trak, D., Kendüzler, E., Lima, E.C., Tran, H.N., Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water (2020) Sci. Total Environ., 726; Scott, C.D., Kinetics of the Catalyzed oxidation of hydrogen, Carbon monoxide, and methane by oxygen in a flowing stream of helium (1961), Oak Ridge Natl. Lab; Bonnelle, J.P., Delmon, B., Derouane, E., Surface Properties and Catalysis by Non-Metals (1983), Springer Netherlands Dordrecht; Sourirajan, S., Accomazzo, M.A., Catalytic oxidation of carbon monoxide present in low concentrations (1960) Can. J. Chem., 38, pp. 1990-1998; Matveyeva, A.N., Wärnå, J., Pakhomov, N.A., Murzin, D.Y., Kinetic modeling of isobutane dehydrogenation over Ga2O3/Al2O3 catalyst (2020) Chem. Eng. J., 381; Cam, T.S., Vishnevskaya, T.A., Omarov, S.O., Nevedomskiy, V.N., Popkov, V.I., Urea-nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio (2020) J. Mater. Sci., 55, pp. 11891-11906; Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure Appl. Chem., 87, pp. 1051-1069; Li, J., Wang, Z., Yang, X., Hu, L., Liu, Y., Wang, C., Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR (2007) J. Anal. Appl. Pyrolysis, 80, pp. 247-253; Gu, Z., Li, K., Qing, S., Zhu, X., Wei, Y., Li, Y., Wang, H., Enhanced reducibility and redox stability of Fe2O3 in the presence of CeO2 nanoparticles (2014) RSC Adv., 4, pp. 47191-47199; Li, K., Haneda, M., Gu, Z., Wang, H., Ozawa, M., Modification of CeO2 on the redox property of Fe2O3 (2013) Mater. Lett., 93, pp. 129-132; Zhang, W., Shi, X., Gao, M., Liu, J., Lv, Z., Wang, Y., Huo, Y., He, H., Iron-based composite oxide catalysts tuned by CTAB exhibit superior NH3-SCR performance (2021) Catalysts, 11, p. 224; Ning, W., Li, B., Wang, B., Yang, X., Jin, Y., Enhanced production of C5+ hydrocarbons from CO2 hydrogenation by the synergistic effects of Pd and K on γ-Fe2O3 catalyst (2019) Catal. Lett., 149, pp. 431-440; Matz, O., Calatayud, M., Breaking H2 with CeO2: effect of surface termination (2018) ACS Omega, 3, pp. 16063-16073; Omarov, S.O., Martinson, K.D., Matveyeva, A.N., Chebanenko, M.I., Nevedomskiy, V.N., Popkov, V.I., Renewable hydrogen production via glycerol steam reforming over Ni/CeO2 catalysts obtained by solution combustion method: the effect of Ni loading (2022) Fuel Process. Technol., 236; He, J., Zhang, H., Wang, W., Yao, P., Jiao, Y., Wang, J., Chen, Y., Soot combustion over CeO2 catalyst: the influence of biodiesel impurities (Na, K, Ca, P) on surface chemical properties (2021) Environ. Sci. Pollut. Res., 28, pp. 26018-26029; Désaunay, T., Bonura, G., Chiodo, V., Freni, S., Couzinié, J.-P., Bourgon, J., Ringuedé, A., Cassir, M., Surface-dependent oxidation of H2 on CeO2 surfaces (2013) J. Catal., 297, pp. 193-201; Xiao, P., Zhong, L., Zhu, J., Hong, J., Li, J., Li, H., Zhu, Y., CO and soot oxidation over macroporous perovskite LaFeO3 (2015) Catal. Today, 258, pp. 660-667; Liao, X., Zhang, Y., Guo, J., Zhao, L., Hill, M., Jiang, Z., Zhao, Y., The catalytic hydrogenation of maleic anhydride on CeO2−δ-supported transition metal catalysts (2017) Catalysts, 7, p. 272; Mullins, D.R., Albrecht, P.M., Calaza, F., Variations in reactivity on different crystallographic orientations of cerium oxide (2013) Top. Catal., 56, pp. 1345-1362; Manto, M.J., Xie, P., Wang, C., Catalytic dephosphorylation using ceria nanocrystals (2017) ACS Catal., 7, pp. 1931-1938; Machida, M., Kawada, T., Fujii, H., Hinokuma, S., The role of CeO2 as a gateway for oxygen storage over CeO2-grafted Fe2O3 composite materials (2015) J. Phys. Chem. C, 119, pp. 24932-24941; Kucharczyk, B., Adamska, K., Tylus, W., Miśta, W., Szczygieł, B., Winiarski, J., Effect of silver addition to LaFeO3 perovskite on the activity of monolithic La1−xAgxFeO3 perovskite catalysts in methane hexane oxidation (2019) Catal. Lett., 149, pp. 1919-1933; Shinde, V.M., Madras, G., Kinetic studies of ionic substituted copper catalysts for catalytic hydrogen combustion (2012) Catal. Today, 198, pp. 270-279; Shinde, V.M., Madras, G., Nanostructured Pd modified Ni/CeO2 catalyst for water gas shift and catalytic hydrogen combustion reaction (2013) Appl. Catal. B Environ., 132-133, pp. 28-38; Liu, X., Liu, J., Chang, Z., Sun, X., Li, Y., Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation (2011) Catal. Commun., 12, pp. 530-534; Bao, H., Chen, X., Fang, J., Jiang, Z., Huang, W., Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation (2008) Catal. Lett., 125, pp. 160-167; Yang, Q., Li, J., Wang, D., Peng, Y., Ma, Y., Activity improvement of acid treatment on LaFeO3 catalyst for CO oxidation (2021) Catal. Today, 376, pp. 205-210; Buciuman, F.-C., Patcas, F., Menezo, J.-C., Barbier, J., Hahn, T., Lintz, H.-G., Catalytic properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) perovskites: 1. Oxidation of hydrogen and propene (2002) Appl. Catal. B Environ., 35, pp. 175-183

PY - 2023/9/1

Y1 - 2023/9/1

N2 - Foam-like nanocomposites of the Ce–Fe–O system with two (c-CeO2, am-F2O3), three (c-CeO2, o-CeFeO3, α-F2O3), or four phases (c-CeO2, o-CeFeO3, α-F2O3, am-Fe2O3) were synthesized using the RedOx reaction of glycine-nitrate combustion. The glycine/nitrate ratio (G/N) varied from deficient (0.2, 0.4) and stoichiometric (0.6) to excess ratios of glycine (0.8, 1.0, 1.2, 1.4). PXRD, 57Fe Mössbauer spectroscopy, N2-physisorption, TEM, H2-TPD, O2-TPD, and H2-TPR were used to examine the characteristics of the obtained samples. The average crystallite size of the obtained composites was in the range of 1.3–31.3 nm, 33.4–50.7 nm, and 10.1–33.9 nm for c-CeO2, o-CeFeO3, and α-Fe2O3, respectively. The lowest SBET (1.5 m2/g) belonged to the case of stoichiometric G/N, while the highest value (49.2 m2/g) was found in the case of the highest amount of glycine (G/N = 1.4); the latter case also had the largest total pore volume (Vp = 0.182 cm3/g) when compared to the others. Moreover, the advanced catalytic performance of foamy Ce–Fe–O-based nanocomposites toward H2 combustion in air was found with t10 = 275 °C, t50 = 345 °C, and Ea = 76.9 kJ/mol for sample G/N = 1.2. The higher activity of sample G/N = 1.2 in catalysis was attributed to different properties of the composite, including an appropriate component phase ratio, the smaller size of crystallites, higher specific surface area, higher reducibility,oxygen capacity, etc. The findings make it possible to carry out the directed synthesis of catalysts based on the Ce–Fe–O system with specific phases, dispersion, and morphological composition for efficient hydrogen oxidation at moderate temperatures. © 2023 Vietnam National University, Hanoi

AB - Foam-like nanocomposites of the Ce–Fe–O system with two (c-CeO2, am-F2O3), three (c-CeO2, o-CeFeO3, α-F2O3), or four phases (c-CeO2, o-CeFeO3, α-F2O3, am-Fe2O3) were synthesized using the RedOx reaction of glycine-nitrate combustion. The glycine/nitrate ratio (G/N) varied from deficient (0.2, 0.4) and stoichiometric (0.6) to excess ratios of glycine (0.8, 1.0, 1.2, 1.4). PXRD, 57Fe Mössbauer spectroscopy, N2-physisorption, TEM, H2-TPD, O2-TPD, and H2-TPR were used to examine the characteristics of the obtained samples. The average crystallite size of the obtained composites was in the range of 1.3–31.3 nm, 33.4–50.7 nm, and 10.1–33.9 nm for c-CeO2, o-CeFeO3, and α-Fe2O3, respectively. The lowest SBET (1.5 m2/g) belonged to the case of stoichiometric G/N, while the highest value (49.2 m2/g) was found in the case of the highest amount of glycine (G/N = 1.4); the latter case also had the largest total pore volume (Vp = 0.182 cm3/g) when compared to the others. Moreover, the advanced catalytic performance of foamy Ce–Fe–O-based nanocomposites toward H2 combustion in air was found with t10 = 275 °C, t50 = 345 °C, and Ea = 76.9 kJ/mol for sample G/N = 1.2. The higher activity of sample G/N = 1.2 in catalysis was attributed to different properties of the composite, including an appropriate component phase ratio, the smaller size of crystallites, higher specific surface area, higher reducibility,oxygen capacity, etc. The findings make it possible to carry out the directed synthesis of catalysts based on the Ce–Fe–O system with specific phases, dispersion, and morphological composition for efficient hydrogen oxidation at moderate temperatures. © 2023 Vietnam National University, Hanoi

KW - CeO2–Fe2O3

KW - Cerium orthoferrite

KW - Glycine-nitrate condition

KW - Hydrogen catalytic oxidation

KW - Perovskite

KW - Solution combustion synthesis

UR - https://www.mendeley.com/catalogue/4d2dd481-eda7-3e06-9c23-a527f4265544/

U2 - 10.1016/j.jsamd.2023.100596

DO - 10.1016/j.jsamd.2023.100596

M3 - статья

VL - 8

JO - Journal of Science-Advanced Materials and Devices

JF - Journal of Science-Advanced Materials and Devices

SN - 2468-2284

IS - 3

M1 - 100596

ER -

ID: 114407657