Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
First-Order Ode Systems Generating Confluent Heun Equations. / Salatich, A. A.; Slavyanov, S. Yu.; Stesik, O. L.
в: Journal of Mathematical Sciences (United States), Том 251, № 3, 01.12.2020, стр. 427-432.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - First-Order Ode Systems Generating Confluent Heun Equations
AU - Salatich, A. A.
AU - Slavyanov, S. Yu.
AU - Stesik, O. L.
N1 - Salatich, A.A., Slavyanov, S. & Stesik, O.L. First-Order Ode Systems Generating Confluent Heun Equations. J Math Sci 251, 427–432 (2020). https://doi.org/10.1007/s10958-020-05102-7
PY - 2020/12/1
Y1 - 2020/12/1
N2 - We study the relation between linear second-order equations that are confluent Heun equations, namely, the biconfluent and triconfluent Heun equations, and first-order linear systems of equations generating Painlevé equations. The generation process is interpreted in physical terms as antiquantization. Technically, the study in volves manipulations with polynomials. The complexity of computations sometimes requires using computer algebra systems. Bibliography: 13 titles.
AB - We study the relation between linear second-order equations that are confluent Heun equations, namely, the biconfluent and triconfluent Heun equations, and first-order linear systems of equations generating Painlevé equations. The generation process is interpreted in physical terms as antiquantization. Technically, the study in volves manipulations with polynomials. The complexity of computations sometimes requires using computer algebra systems. Bibliography: 13 titles.
UR - http://www.scopus.com/inward/record.url?scp=85094637435&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/16bb5c2c-e89e-367c-b56e-bc70da5a42d6/
U2 - 10.1007/s10958-020-05102-7
DO - 10.1007/s10958-020-05102-7
M3 - Article
AN - SCOPUS:85094637435
VL - 251
SP - 427
EP - 432
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 3
ER -
ID: 71424394