Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
First M87 Event Horizon Telescope Results. II. Array and Instrumentation. / Event Horizon Telescope Collaborat ; Эрштадт, Светлана Георгиевна.
в: Astrophysical Journal Letters, Том 875, № 1, L2, 10.04.2019.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - First M87 Event Horizon Telescope Results. II. Array and Instrumentation
AU - Event Horizon Telescope Collaborat
AU - Akiyama, Kazunori
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Asada, Keiichi
AU - Azulay, Rebecca
AU - Baczko, Anne-Kathrin
AU - Ball, David
AU - Balokovic, Mislav
AU - Barrett, John
AU - Bintley, Dan
AU - Blackburn, Lindy
AU - Boland, Wilfred
AU - Bouman, Katherine L.
AU - Bower, Geoffrey C.
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broderick, Avery E.
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Byun, Do-Young
AU - Carlstrom, John E.
AU - Chael, Andrew
AU - Chan, Chi-Kwan
AU - Chatterjee, Shami
AU - Chatterjee, Koushik
AU - Chen, Ming-Tang
AU - Chen, Yongjun
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conway, John E.
AU - Cordes, James M.
AU - Crew, Geoffrey B.
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - De Laurentis, Mariafelicia
AU - Deane, Roger
AU - Dempsey, Jessica
AU - Desvignes, Gregory
AU - Dexter, Jason
AU - Doeleman, Sheperd S.
AU - Eatough, Ralph P.
AU - Falcke, Heino
AU - Fish, Vincent L.
AU - Fomalont, Ed
AU - Fraga-Encinas, Raquel
AU - Friberg, Per
AU - Fromm, Christian M.
AU - Эрштадт, Светлана Георгиевна
AU - Gomez, Jose L.
PY - 2019/4/10
Y1 - 2019/4/10
N2 - The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ∼1.3 mm, EHT angular resolution (λ/D) is ∼25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s -1 , exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.
AB - The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ∼1.3 mm, EHT angular resolution (λ/D) is ∼25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s -1 , exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.
KW - black hole physics
KW - galaxies: individual (M87)
KW - Galaxy: center
KW - gravitational lensing: strong
KW - instrumentation: interferometers
KW - techniques: high angular resolution
KW - SGR-A-ASTERISK
KW - SUPERMASSIVE BLACK-HOLE
KW - MAGNETIC-FIELD STRUCTURE
KW - GHZ VLBI OBSERVATIONS
KW - COHERENCE LIMITS
KW - INTRINSIC SIZE
KW - PICO-VELETA
KW - RADIO
KW - ACCRETION
KW - PARAMETERS
UR - http://www.scopus.com/inward/record.url?scp=85064442259&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/first-m87-event-horizon-telescope-results-ii-array-instrumentation-1
U2 - 10.3847/2041-8213/ab0c96
DO - 10.3847/2041-8213/ab0c96
M3 - статья
VL - 875
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
SN - 2041-8205
IS - 1
M1 - L2
ER -
ID: 41191293