DOI

The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor in this system can be localized by analytical/numerical methods based on the continuation and perpetual points. The concept of finite-time Lyapunov dimension is developed for numerical study of the dimension of attractors. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of exact Lyapunov dimension are discussed. A comparative survey on the computation of the finite-time Lyapunov exponents and dimension by different algorithms is presented. An adaptive algorithm for studying the dynamics of the finite-time Lyapunov dimension is suggested. Various estimates of the finite-time Lyapunov dimension for the hidden attractor and hidden transient chaotic set in the case of multistability are given.

Язык оригиналаанглийский
Страницы (с-по)267-285
Число страниц19
ЖурналNonlinear Dynamics
Том92
Номер выпуска2
DOI
СостояниеОпубликовано - 1 апр 2018

    Предметные области Scopus

  • Системотехника
  • Авиакосмическая техника
  • Океанотехника
  • Общее машиностроение
  • Прикладная математика
  • Электротехника и электроника

ID: 35274833