DOI

In this paper, we describe factor representations of discrete 2-step nilpotent groups with 2-divisible center in the spirit of the orbit method. We show that some standard theorems of the orbit method are valid for these groups. In the case of countable 2-step nilpotent groups we explain how to construct a factor representation starting with an orbit of the "coadjoint representation." We also prove that every factor representation (more precisely, every trace) can be obtained by this construction, and prove a theorem on the decomposition of a factor representation restricted to a subgroup. Bibliography: 7 titles.

Язык оригиналаанглийский
Страницы (с-по)5508-5519
Число страниц12
ЖурналJournal of Mathematical Sciences
Том131
Номер выпуска2
DOI
СостояниеОпубликовано - 1 ноя 2005

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 52478067