DOI

The standard elementary number theory is not a finite axiomatic system due to the presence of the induction axiom scheme. Absence of a finite axiomatic system is not an obstacle for most tasks, but may be considered as imperfect since the induction is strongly associated with the presence of set theory external to the axiomatic system. Also in the case of logic approach to the artificial intelligence problems presence of a finite number of basic axioms and states is important. Axiomatic hyperrational analysis is the axiomatic system of hyperrational number field. The properties of hyperrational numbers and functions allow them to be used to model real numbers and functions of classical elementary mathematical analysis. However hyperrational analysis is based on well-known non-finite hyperarithmetic axiomatics. In the article we present a new finite first-order arithmetic theory designed to be the basis of the axiomatic hyperrational analysis and, as a consequence, mathematical analysis in general as a basis for all mathematical application including AI problems. It is shown that this axiomatics meet the requirements, i.e., it could be used as the basis of an axiomatic hyperrational analysis. The article in effect completes the foundation of axiomatic hyperrational analysis without calling in an arithmetic extension, since in the framework of the presented theory infinite numbers arise without invoking any new constants. The proposed system describes a class of numbers in which infinite numbers exist as natural objects of the theory itself. We also do not appeal to any “enveloping” set theory.

Язык оригиналаанглийский
Номер статьи263
ЖурналAxioms
Том10
Номер выпуска4
DOI
СостояниеОпубликовано - дек 2021

    Предметные области Scopus

  • Анализ
  • Логика
  • Геометрия и топология
  • Алгебра и теория чисел
  • Математическая физика

ID: 87335339