Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. / Антонов, Николай Викторович; Гулицкий, Николай Михайлович; Какинь, Полина Игоревна; Лебедев, Никита Михайлович; Тумакова, Мария Михайловна.
в: Symmetry, Том 15, № 8, 1556, 08.08.2023.Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
}
TY - JOUR
T1 - Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili
AU - Антонов, Николай Викторович
AU - Гулицкий, Николай Михайлович
AU - Какинь, Полина Игоревна
AU - Лебедев, Никита Михайлович
AU - Тумакова, Мария Михайловна
PY - 2023/8/8
Y1 - 2023/8/8
N2 - This paper is concerned with intriguing possibilities for non-conventional critical behavior that arise when a nearly critical strongly non-equilibrium system is subjected to chaotic or turbulent motion of the environment. We briefly explain the connection between the critical behavior theory and the quantum field theory that allows the application of the powerful methods of the latter to the study of stochastic systems. Then, we use the results of our recent research to illustrate several interesting effects of turbulent environment on the non-equilibrium critical behavior. Specifically, we couple the Kazantsev–Kraichnan “rapid-change” velocity ensemble that describes the environment to the three different stochastic models: the Kardar–Parisi–Zhang equation with time-independent random noise for randomly growing surface, the Hwa–Kardar model of a “running sandpile” and the generalized Pavlik model of non-linear diffusion with infinite number of coupling constants. Using field-theoretic renormalization group analysis, we show that the effect can be quite significant leading to the emergence of induced non-linearity or making the original anisotropic scaling appear only through certain “dimensional transmutation”.
AB - This paper is concerned with intriguing possibilities for non-conventional critical behavior that arise when a nearly critical strongly non-equilibrium system is subjected to chaotic or turbulent motion of the environment. We briefly explain the connection between the critical behavior theory and the quantum field theory that allows the application of the powerful methods of the latter to the study of stochastic systems. Then, we use the results of our recent research to illustrate several interesting effects of turbulent environment on the non-equilibrium critical behavior. Specifically, we couple the Kazantsev–Kraichnan “rapid-change” velocity ensemble that describes the environment to the three different stochastic models: the Kardar–Parisi–Zhang equation with time-independent random noise for randomly growing surface, the Hwa–Kardar model of a “running sandpile” and the generalized Pavlik model of non-linear diffusion with infinite number of coupling constants. Using field-theoretic renormalization group analysis, we show that the effect can be quite significant leading to the emergence of induced non-linearity or making the original anisotropic scaling appear only through certain “dimensional transmutation”.
KW - cooperative systems
KW - critical behavior
KW - kinetic roughening
KW - random growth
KW - renormalizaton group
KW - scaling
KW - self-organized criticality
KW - universality
UR - https://www.mendeley.com/catalogue/3833b384-b61e-3eec-9e24-60d594a8fee1/
U2 - 10.3390/sym15081556
DO - 10.3390/sym15081556
M3 - Review article
VL - 15
JO - Symmetry
JF - Symmetry
SN - 2073-8994
IS - 8
M1 - 1556
ER -
ID: 107736700