Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Feasibility study of multisensor systems for the assessment of water pollution index induced by heavy metal contamination : Microchemical Journal. / Iurgenson, N.; Wang, X.; Kong, L.; Sun, X.; Legin, A.; Wang, P.; Wan, H.; Kirsanov, D.
в: Microchemical Journal, Том 197, 109762, 01.02.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Feasibility study of multisensor systems for the assessment of water pollution index induced by heavy metal contamination
T2 - Microchemical Journal
AU - Iurgenson, N.
AU - Wang, X.
AU - Kong, L.
AU - Sun, X.
AU - Legin, A.
AU - Wang, P.
AU - Wan, H.
AU - Kirsanov, D.
N1 - Цитирования:3 Export Date: 5 October 2024 CODEN: MICJA Адрес для корреспонденции: Wan, H.; Institute of Chemistry, Russian Federation; эл. почта: wh1816@zju.edu.cn Сведения о финансировании: National Natural Science Foundation of China, NSFC, 51861145307 Сведения о финансировании: Russian Foundation for Basic Research, РФФИ, 18-53-80010 Текст о финансировании 1: This work was supported by BRICS Cooperation Project between Russia and China from Russian Basic Research Foundation (Grant No. 18-53-80010 ) and Natural Science Foundation of China (Grant No. 51861145307 ).
PY - 2024/2/1
Y1 - 2024/2/1
N2 - The development of the analytical instruments for rapid in-field evaluation of integral surface water quality parameters is an urgent analytical task. Using three different sensor devices (optical sensor for cadmium, voltammetric sensor for lead and potentiometric multisensor system), we have explored the possibility of direct quantification of water pollution index (WPI) for contaminations induced by heavy metals. We have applied linear (partial least squares, PLS) and non-linear (kernel regularized least squares, KRLS) multivariate regression tools to construct predictive models evaluating the content of individual metals and WPI in complex aqueous media simulating surface water composition. We have also explored the potential of data fusion at different levels combining the signals from all three sensor devices. The results indicate that all the instruments retain the sensitivity towards target analytes in complex aqueous samples containing humic substances and that the direct quantification of WPI in the range from 1 to 4 is possible using the employed instruments with RMSE values around 0.14. © 2023 Elsevier B.V.
AB - The development of the analytical instruments for rapid in-field evaluation of integral surface water quality parameters is an urgent analytical task. Using three different sensor devices (optical sensor for cadmium, voltammetric sensor for lead and potentiometric multisensor system), we have explored the possibility of direct quantification of water pollution index (WPI) for contaminations induced by heavy metals. We have applied linear (partial least squares, PLS) and non-linear (kernel regularized least squares, KRLS) multivariate regression tools to construct predictive models evaluating the content of individual metals and WPI in complex aqueous media simulating surface water composition. We have also explored the potential of data fusion at different levels combining the signals from all three sensor devices. The results indicate that all the instruments retain the sensitivity towards target analytes in complex aqueous samples containing humic substances and that the direct quantification of WPI in the range from 1 to 4 is possible using the employed instruments with RMSE values around 0.14. © 2023 Elsevier B.V.
KW - Chemical sensors
KW - Chemometrics
KW - Heavy metal contamination
KW - Multisensor systems
KW - Water pollution index
UR - https://www.mendeley.com/catalogue/9d7fca28-1fc2-329c-bd09-6c82ce08f537/
U2 - 10.1016/j.microc.2023.109762
DO - 10.1016/j.microc.2023.109762
M3 - статья
VL - 197
JO - Microchemical Journal
JF - Microchemical Journal
SN - 0026-265X
M1 - 109762
ER -
ID: 125643837