DOI

We consider a nonsymmetric matrix operator whose eigenvalue problem is the system of Faddeev differential equations for a three-particle system. For this operator and its adjoint, the resolvents are represented in terms of Faddeev T-matrix components of the three-particle Schrödinger operator. On the basis of these representations, the invariant spaces of the operators under consideration are investigated and their eigenfunctions are determined. The biorthogonality and completeness of the eigenfunction system are proved.

Язык оригиналаанглийский
Страницы (с-по)835-847
Число страниц13
ЖурналTheoretical and Mathematical Physics
Том107
Номер выпуска3
DOI
СостояниеОпубликовано - июн 1996

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 39498693